Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 208: 116918, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265309

RESUMEN

The role of macroalgae as blue carbon (BC) under changing climate was investigated in the subtropical western North Pacific. Sea surface temperatures (SSTs) and nutrient influx increased over the past two decades (2001-2021). The proliferation of climate-resilient macroalgae was facilitated. Using Pterocladiella capillacea and Turbinaria ornata, outdoor laboratory experiments and elemental assays underscored the influence of nutrient enrichment on their resilience under ocean warming and low salinity. Macroalgal incorporation into marine sediments, indicated by environmental DNA barcoding, total organic carbon (TOC), and stable isotope analysis. Over time, an increase in δ13C and δ15N values, particularly at greater depths, suggests a tendency of carbon signature towards macroalgaeand nitrogen pollution or high tropic levels. eDNA analysis revealed selective deposition of these species. The species-dependent nature of macroalgae in deep-sea sediments highlights the role of nutrients on climate-resilient macroalgal blooms as carbon sinks in the western North Pacific.

2.
Sci Total Environ ; 953: 175659, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181268

RESUMEN

Fish early life stages are particularly vulnerable and heavily affected by changing environmental factors. The interactive effects of multiple climate change-related stressors on fish larvae remain, however, largely underexplored. As rising temperatures can increase the abundance and virulence of bacteria, we investigated the combination of a spring heat wave and bacterial exposure on the development of Atlantic herring larvae (Clupea harengus). Eggs and larvae of Western Baltic Spring-spawners were reared at a normal and high temperature ramp and exposed to Vibrio alginolyticus and V. anguillarum, respectively. Subsequently, mRNA and miRNA transcriptomes, microbiota composition, growth and survival were assessed. Both high temperature and V. alginolyticus exposure induced a major downregulation of gene expression likely impeding larval cell proliferation. In contrast, interactive effects of elevated temperature and V. alginolyticus resulted in minimal gene expression changes, indicating an impaired plastic response, which may cause cellular damage reducing survival in later larval stages. The heat wave alone or in combination with V. alginolyticus induced a notable shift in miRNA expression leading to the down- but also upregulation of predicted target genes. Moreover, both increased temperature and the Vibrio exposures significantly altered the larval microbiota composition, with warming reducing microbial richness and diversity. The outcomes of this study highlight the high sensitivity of herring early life stages towards multiple climate change-related stressors. Our results indicate that interactive effects of rapidly changing environmental factors may exceed the larval stress threshold impairing essential acclimation responses, which may contribute to the ongoing recruitment decline of Western Baltic Spring-Spawning herring.

3.
J Phycol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105657

RESUMEN

Understanding how macroalgal forests will respond to environmental change is critical for predicting future impacts on coastal ecosystems. Although measures of adult macroalgae physiological responses to environmental stress are advancing, measures of early life-stage physiology are rare, in part due to the methodological difficulties associated with their small size. Here we tested a novel, high-throughput method (rate of oxygen consumption and production; V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ) via a sensor dish reader microplate system to rapidly measure physiological rates of the early life stages of three habitat-forming macroalgae, the kelp Ecklonia radiata and the fucoids Hormosira banksii and Phyllospora comosa. We measured the rate of O2 consumption (respiration) and O2 production (net primary production) to then calculate gross primary production (GPP) under temperatures representing their natural thermal range. The V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system was suitable for rapidly measuring physiological rates over a temperature gradient to establish thermal performance curves for all species. The V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system proved efficient for measures of early life stages of macroalgae ranging in size from approximately 50 µm up to 150 mm. This method has the potential for measuring responses of early life stages across a range of environmental factors, species, populations, and developmental stages, vastly increasing the speed, precision, and efficacy of macroalgal physiological measures under future ocean change scenarios.

4.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230171, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39034694

RESUMEN

Marine heatwaves have caused massive mortality in coastal benthic ecosystems, altering community composition. Here, we aim to understand the effects of single and sequential sublethal heatwaves in a temperate benthic ecosystem, investigating their disturbance on various levels of ecological hierarchy, i.e. individual physiology, trophic groups' biomass and ecosystem carbon fluxes. To do so, we performed a near-natural experiment using outdoor benthic mesocosms along spring/summer, where communities were exposed to different thermal regimes: without heatwaves (0HW), with one heatwave (1HW) and with three heatwaves (3HWs). Gastropods were negatively impacted by one single heatwave treatment, but the exposure to three sequential heatwaves caused no response, indicating ecological stress memory. The magnitude of ecosystem carbon fluxes mostly decreased after 1HW, with a marked negative impact on mesograzers' feeding, while the overall intensity of carbon fluxes increased after 3HWs. Consumers' acclimation after the exposure to sequential heatwaves increased grazing activity, representing a threat for the macroalgae biomass. The evaluation of physiological responses and ecological interactions is crucial to interpret variations in community composition and to detect early signs of stress. Our results reveal the spread of heatwave effects along the ecological hierarchical levels, helping to predict the trajectories of ecosystem development.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Asunto(s)
Aclimatación , Ecosistema , Animales , Aclimatación/fisiología , Biomasa , Calor Extremo/efectos adversos , Ciclo del Carbono , Gastrópodos/fisiología , Cadena Alimentaria , Calor/efectos adversos
5.
J Hazard Mater ; 477: 135305, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053071

RESUMEN

At present, a clear dependency of the dynamics upon temperature and pH has not been established for many heavy metals (HMs), so making it difficult to project and quantify the impact of ocean warming and acidification on metal biogeochemistry in future scenarios. To understand the responses of HMs to future ocean warming and acidification, we estimated the spatial-temporal variations and pollution status of six dissolved HMs (i.e., Cu, Zn, Pb, Cd, Hg, and As) in surface seawater throughout the Bohai Sea during 2012-2014. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Hg, and As in seawater of the Bohai Sea were between 2.01-3.18, 10.47-15.58, 0.85-2.31, 0.25-0.55, 0.05-0.13, and 1.24-1.98 µg L-1, respectively. Spatially, the average concentrations of the studied HMs generally decreased from the three bays towards the central area, except for Hg which was relatively high in the central Bohai Sea in some cases. This implied that, in addition to continental inputs, there may be other processes affecting the distribution pattern of Hg, such as cyclonic or anticyclonic gyres, benthic fluxes between surface and bottom layers, and some marine planktonic and microbial activities. The pollution assessments of six HMs in seawater revealed that the major risk pollutants were Pb and Hg across the Bohai Sea. Analyses of the local and interactive effects of temperature and pH on HMs showed that the interactive effect of changing temperature and pH on HMs is much more complex than a direct temperature/pH relationship with HMs. Altogether, the results suggested that future ocean warming and acidification will significantly influence the concentrations of dissolved HMs in seawater of the Bohai Sea, but with different relationships.

6.
Sci Total Environ ; 949: 174589, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981551

RESUMEN

There is growing evidence that reef-building corals can acclimate to novel and challenging thermal conditions. However, potential trade-offs that accompany acclimation remain largely unexplored. We investigated physiological trade-offs in colonies of a globally abundant coral species (Pocillopora acuta) that were acclimated ex situ to an elevated temperature of 31 °C (i.e., 1 °C above their bleaching threshold) for six years. By comparing them to conspecifics maintained at a cooler temperature, we found that the energy storage of corals was prioritized over skeletal growth at the elevated temperature. This was associated with the formation of higher density skeletons, lower calcification rates and consequently lower skeletal extension rates, which entails ramifications for future reef-building processes, structural complexity and reef community composition. Furthermore, symbionts were physiologically compromised at 31 °C and had overall lower energy reserves, likely due to increased exploitation by their host, resulting in an overall lower stress resilience of the holobiont. Our study shows how biological trade-offs of thermal acclimation unfold, helping to refine our picture of future coral reef trajectories. Importantly, our observations in this six-year study do not align with observations of short-term studies, where elevated temperatures were often associated with the depletion of energy reserves, highlighting the importance of studying acclimation of organisms at relevant biological scales.


Asunto(s)
Aclimatación , Antozoos , Arrecifes de Coral , Antozoos/fisiología , Animales , Aclimatación/fisiología , Temperatura
7.
Sci Total Environ ; 945: 174058, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897478

RESUMEN

Ocean warming will continue to affect the growth, body condition and geographic distributions of marine fishes and understanding these effects is an urgent challenge for fisheries research and management. Determining how temperature is recorded in fish otolith carbonate, provides an additional chronological tool to investigate thermal histories, preferences and patterns of movement throughout an individual's life history. The influence of three water temperature treatments (22°C, 25°C, and 28°C) on hatchery-reared juvenile stout whiting, Sillago robusta, was tested using a controlled outdoor mesocosm system. Fish were measured for change in length and weight, and body condition was determined using bioelectrical impedance analysis. Sagittal otoliths were analysed for stable oxygen (δ18Ootolith) and carbon (δ13Cotolith) isotopes via isotope ratio mass spectrometry. Whiting kept at 22°C were significantly smaller and had diminished body condition compared to fish in 25°C and 28°C, which did not significantly differ from each other. The δ18O otolith values of stout whiting demonstrated a negative temperature-dependent fractionation relationship which was similar in slope but had a different intercept to the relationships reported for inorganic aragonite and other marine fish species. The δ13C otolith values also showed a negative relationship with water temperature, and the calculated proportion of metabolic carbon M in otoliths differed between fish reared in the coolest (22°C) and warmest (28°C) temperature treatments. Overall, the results suggest that stout whiting may have reached an upper growth threshold between 25°C and 28°C, and that growth and body condition may be optimised during warmer seasons and toward the northerly regions of their distribution. Otolith oxygen thermometry shows promise as a natural tracer of thermal life history, and species-specific fractionation equations should be utilised when possible to prevent errors in temperature reconstructions of wild-caught fish.


Asunto(s)
Isótopos de Carbono , Membrana Otolítica , Isótopos de Oxígeno , Temperatura , Animales , Membrana Otolítica/química , Isótopos de Oxígeno/análisis , Isótopos de Carbono/análisis , Gadiformes/metabolismo , Gadiformes/fisiología , Agua de Mar/química
8.
Sci Rep ; 14(1): 13786, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877056

RESUMEN

No-take marine protected areas (MPAs) can mitigate the effects of overfishing, climate change and habitat degradation, which are leading causes of an unprecedented global biodiversity crisis. However, assessing the effectiveness of MPAs, especially in remote oceanic islands, can be logistically challenging and often restricted to relatively shallow and accessible environments. Here, we used a long-term dataset (2010-2019) collected by the DeepSee submersible of the Undersea Hunter Group that operates in Isla del Coco National Park, Costa Rica, to (1) determine the frequency of occurrence of elasmobranch species at two depth intervals (50-100 m; 300-400 m), and (2) investigate temporal trends in the occurrence of common elasmobranch species between 2010 and 2019, as well as potential drivers of the observed changes. Overall, we observed 17 elasmobranch species, 15 of which were recorded on shallow dives (50-100 m) and 11 on deep dives (300-400 m). We found a decreasing trend in the probability of occurrence of Carcharhinus falciformis over time (2010-2019), while other species (e.g. Taeniurops meyeni, Sphyrna lewini, Carcharhinus galapagensis, Triaenodon obesus, and Galeocerdo cuvier) showed an increasing trend. Our study suggests that some species like S. lewini may be shifting their distributions towards deeper waters in response to ocean warming but may also be sensitive to low oxygen levels at greater depths. These findings highlight the need for regional 3D environmental information and long-term deepwater surveys to understand the extent of shark and ray population declines in the ETP and other regions, as most fishery-independent surveys from data-poor countries have been limited to relatively shallow waters.


Asunto(s)
Biodiversidad , Elasmobranquios , Animales , Océano Pacífico , Conservación de los Recursos Naturales , Ecosistema , Cambio Climático , Costa Rica , Islas
9.
Mar Environ Res ; 199: 106609, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878347

RESUMEN

Forecasts indicate that rising temperatures towards the future and the expansion of dead zones will change environmental suitability for fish early stages. Therefore, we assessed the chronic effects of warming (26 °C), hypoxia (<2-2.5 mg L-1) or their combination on mortality rate, growth, behaviour, energy metabolism and oxidative stress using Atherina presbyter larvae as a model species. There were no differences between the treatments in terms of mortality rate. The combination of warming and hypoxia induced faster loss of body mass (+22.7%). Warming, hypoxia or their combination enhanced boldness (+14.7-25.4%), but decreased exploration (-95%-121%), increased the time in frozen state (+60.6-80.5%) and depleted swimming speed (-45.6-50.5%). Moreover, routine metabolic rate was depleted under hypoxia or under the combination of warming and hypoxia (-56.6 and 57.2%, respectively). Under hypoxia, increased catalase activity (+56.3%) indicates some level of antioxidant defence capacity, although increased DNA damage (+25.2%) has also been observed. Larvae also exhibited a great capacity to maintain the anaerobic metabolism stable in all situations, but the aerobic metabolism is enhanced (+19.3%) when exposed to the combination of both stressors. The integrative approach showed that changes in most target responses can be explained physiologically by oxidative stress responses. Increased oxidative damages (lipid peroxidation and DNA damage) and increased interaction between antioxidant enzymes (superoxide dismutase and catalase) are associated to increased time in frozen state and decreased swimming activity, growth rates and boldness. Under all stressful situations, larvae reduced energy-consuming behaviours (e.g. depleted exploration and swimming activity) likely to stabilize or compensate for the aerobic and anaerobic metabolisms. Despite being an active small pelagic fish, we concluded that the sensitive larval phase exhibited complex coping strategies to physiologically acclimate under thermal and hypoxic stress via behavioural responses.


Asunto(s)
Larva , Estrés Oxidativo , Animales , Larva/fisiología , Conducta Animal , Metabolismo Energético , Estrés Fisiológico/fisiología , Natación , Temperatura
10.
Sci Rep ; 14(1): 14206, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902310

RESUMEN

Record mean sea surface temperatures (SST) during the past decades and marine heatwaves have been identified as responsible for severe impacts on marine ecosystems, but the role of changes in the patterns of temporal variability under global warming has been much less studied. We compare descriptors of two time series of SST, encompassing extirpations (i.e. local extinctions) of six cold-temperate macroalgae species at their trailing range edge. We decompose the effects of gradual warming, extreme events and intrinsic variability (e.g. seasonality). We also relate the main factors determining macroalgae range shifts with their life cycles characteristics and thermal tolerance. We found extirpations of macroalgae were related to stretches of coast where autumn SST underwent warming, increased temperature seasonality, and decreased skewness over time. Regardless of the species, the persisting populations shared a common environmental domain, which was clearly differentiated from those experiencing local extinction. However, macroalgae species responded to temperature components in different ways, showing dissimilar resilience. Consideration of multiple thermal manifestations of climate change is needed to better understand local extinctions of habitat-forming species. Our study provides a framework for the incorporation of unused measures of environmental variability while analyzing the distributions of coastal species.


Asunto(s)
Ecosistema , Calentamiento Global , Algas Marinas , Temperatura , Algas Marinas/fisiología , Cambio Climático , Estaciones del Año , Océanos y Mares , Organismos Acuáticos/fisiología
11.
R Soc Open Sci ; 11(4): 231280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601028

RESUMEN

Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.

12.
Sci Total Environ ; 927: 172145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569974

RESUMEN

Copper (Cu) has sparked widespread global concern as one of the most hazardous metals to aquatic animals. Ocean acidification (OA) and warming (OW) are expected to alter copper's bioavailability based on pH and temperature-sensitive effects; research on their effects on copper on marine organisms is still in its infancy. Therefore, under representative concentration pathways (RCP) 2.6, 4.5, and 8.5, we used the multiple linear regression-water quality criteria (MLR-WQC) method to assess the effects of OA and OW on the ecological risk posed by copper in the Ocean of East China (OEC), which includes the Bohai Sea, Yellow Sea, and East China Sea. The results showed that there was a positive correlation between temperature and copper toxicity, while there was a negative correlation between pH and copper toxicity. The short-term water quality criteria (WQC) values were 1.53, 1.41, 1.30 and 1.13 µg·L-1, while the long-term WQC values were 0.58, 0.48, 0.40 and 0.29 µg·L-1 for 2020, 2099-RCP2.6, 2099-RCP4.5 and 2099-RCP8.5, respectively. Cu in the OEC poses a moderate ecological risk. Under the current copper exposure situation, strict intervention (RCP2.6) only increases the ecological risk of copper exposure by 20 %, and no intervention (RCP8.5) will increase the ecological risk of copper exposure by nearly double. The results indicate that intervention on carbon emissions can slow down the rate at which OA and OW worsen the damage copper poses to marine creatures. This study can provide valuable information for a comprehensive understanding of the combined impacts of climate change and copper on marine organisms.


Asunto(s)
Organismos Acuáticos , Cobre , Monitoreo del Ambiente , Océanos y Mares , Agua de Mar , Contaminantes Químicos del Agua , Cobre/toxicidad , Agua de Mar/química , Organismos Acuáticos/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Concentración de Iones de Hidrógeno , China , Cambio Climático , Calentamiento Global , Animales , Acidificación de los Océanos
13.
Glob Chang Biol ; 30(4): e17255, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572638

RESUMEN

Global warming is one of the most significant and widespread effects of climate change. While early life stages are particularly vulnerable to increasing temperatures, little is known about the molecular processes that underpin their capacity to adapt to temperature change during early development. Using a quantitative proteomics approach, we investigated the effects of thermal stress on octopus embryos. We exposed Octopus berrima embryos to different temperature treatments (control 19°C, current summer temperature 22°C, or future projected summer temperature 25°C) until hatching. By comparing their protein expression levels, we found that future projected temperatures significantly reduced levels of key eye proteins such as S-crystallin and retinol dehydrogenase 12, suggesting the embryonic octopuses had impaired vision at elevated temperature. We also found that this was coupled with a cellular stress response that included a significant elevation of proteins involved in molecular chaperoning and redox regulation. Energy resources were also redirected away from non-essential processes such as growth and digestion. These findings, taken together with the high embryonic mortality observed under the highest temperature, identify critical physiological functions of embryonic octopuses that may be impaired under future warming conditions. Our findings demonstrate the severity of the thermal impacts on the early life stages of octopuses as demonstrated by quantitative proteome changes that affect vision, protein chaperoning, redox regulation and energy metabolism as critical physiological functions that underlie the responses to thermal stress.


Asunto(s)
Octopodiformes , Animales , Temperatura , Cambio Climático , Calentamiento Global , Océanos y Mares
14.
Mar Life Sci Technol ; 6(1): 155-167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38433965

RESUMEN

Coral fluorescence phenotypes have been suggested as an adaptation to a broad range of environmental conditions, yet the mechanisms linking thermal bleaching tolerance in reef-building coral populations, associated with fluorescence phenotypes due to GFP-like proteins, remains unclear. In this study, the relationship between the thermal sensitivity and phenotypic plasticity of corals was investigated using two phenotypes of Galaxea fascicularis, green and brown. The results reveal that brown G. fascicularis was more susceptible to bleaching than green G. fascicularis when exposed to a higher growth temperature of 32 °C. Both phenotypes of G. fascicularis were associated with the thermotolerant Symbiodiniaceae symbiont, Durusdinium trenchii. However, the brown G. fascicularis showed a significant decrease in Symbiodiniaceae cell density and a significant increase in pathogenic bacteria abundance when the growth temperature was raised from 29 to 32 °C. The physiological traits and transcriptomic profiles of Symbiodiniaceae were not notably affected, but there were differences in the transcriptional levels of certain genes between the two phenotype hosts of G. fascicularis. Under heat stress of 32 °C, the gene encoding green fluorescent protein (GFP)-like and chromosome-associated proteins, as well as genes related to oxidative phosphorylation, cell growth and death showed lower transcriptional levels in the brown G. fascicularis compared to the green G. fascicularis. Overall, the results demonstrate that the green form of G. fascicularis is better able to tolerate ocean warming and defend against pathogenic bacteria, likely due to higher gene transcription levels and defense ability. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00190-1.

15.
Front Microbiol ; 15: 1323499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444803

RESUMEN

In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria Synechococcus will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response. Moreover, ecotype-specific adaptations can lead to nuanced differences in responses between strains. In this study, Synechococcus isolates YX04-1 (oceanic) and XM-24 (coastal) from the South China Sea were acclimated to Fe limitation at two temperatures, and their physiological and proteomic responses were compared. Both strains exhibited reduced growth due to warming and Fe limitation. However, coastal XM-24 maintained relatively higher growth rates in response to warming under replete Fe, while its growth was notably more compromised under Fe limitation at both temperatures compared with YX04-1. In response to concurrent heat and Fe stress, oceanic YX04-1 was better able to adjust its photosynthetic proteins and minimize the generation of reactive oxygen species while reducing proteome Fe demand. Its intricate proteomic response likely enabled oceanic YX04-1 to mitigate some of the negative impact of warming on its growth during Fe limitation. Our study highlights how ecologically-shaped adaptations in Synechococcus strains even from proximate oceanic regions can lead to differing physiological and proteomic responses to these climate stressors.

16.
Environ Sci Technol ; 58(13): 5796-5810, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507562

RESUMEN

Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.


Asunto(s)
Algas Comestibles , Kelp , Laminaria , Humanos , Kelp/microbiología , Disbiosis , Agricultura , Ecosistema
17.
R Soc Open Sci ; 11(3): 231683, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38545609

RESUMEN

The Mediterranean Sea is a hotspot of global change, particularly exposed to ocean warming and the increasing occurrence of marine heatwaves (MHWs). However, experiments based on long-term temperature data from the field are scarce. Here, we investigate the response of the zooxanthellate coral Cladocora caespitosa and the azooxanthellate coral Astroides calycularis to future warming and MHWs based on 8 years of in situ data. Corals were maintained in the laboratory for five months under four temperature conditions: Warming (3.2°C above the in situ mean from 2012 to 2020), Heatwave (temperatures of 2018 with two heatwaves), Ambient (in situ mean) and Cool (deeper water temperatures). Under the Warming treatment, some C. caespitosa colonies severely bleached and A. calycularis colonies presented necrosis. Cladocora caespitosa symbiosis was impaired by temperature with a decrease in the density of endosymbiotic algae and an increase in per cent whiteness in all the treatments except for the coolest. Recovery for both species was observed through different mechanisms such as regrowth of polyps of A. calycularis and recovery of pigmentation for C. caespitosa. These results suggest that A. calycularis and C. caespitosa may be resilient to heat stress and can recover from physiological stresses caused by heatwaves in the laboratory.

18.
BMC Genom Data ; 25(1): 28, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459437

RESUMEN

OBJECTIVES: The endosymbiosis with Symbiodiniaceae is key to the ecological success of reef-building corals. However, climate change is threatening to destabilize this symbiosis on a global scale. Most studies looking into the response of corals to heat stress and ocean acidification focus on coral colonies. As such, our knowledge of symbiotic interactions and stress response in other stages of the coral lifecycle remains limited. Establishing transcriptomic resources for coral larvae under stress can thus provide a foundation for understanding the genomic basis of symbiosis, and its susceptibility to climate change. Here, we present a gene expression dataset generated from larvae of the coral Pocillopora damicornis in response to exposure to acidification and elevated temperature conditions below the bleaching threshold of the symbiosis. DATA DESCRIPTION: This dataset is comprised of 16 samples (30 larvae per sample) collected from four treatments (Control, High pCO2, High Temperature, and Combined pCO2 and Temperature treatments). Freshly collected larvae were exposed to treatment conditions for five days, providing valuable insights into gene expression in this vulnerable stage of the lifecycle. In combination with previously published datasets, this transcriptomic resource will facilitate the in-depth investigation of the effects of ocean acidification and elevated temperature on coral larvae and its implication for symbiosis.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Antozoos/metabolismo , Concentración de Iones de Hidrógeno , Larva/genética , Larva/metabolismo , Agua de Mar , Transcriptoma/genética , Océanos y Mares
19.
J Phycol ; 60(2): 503-516, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426571

RESUMEN

Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 µmol · d-1) and high (90 µmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.


Asunto(s)
Kelp , Nitratos , Cambio Climático , Temperatura , Océanos y Mares , Ecosistema
20.
Appl Environ Microbiol ; 90(4): e0005224, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38466091

RESUMEN

Pacific oysters (Magallana gigas, a.k.a. Crassostrea gigas), the most widely farmed oysters, are under threat from climate change and emerging pathogens. In part, their resilience may be affected by their microbiome, which, in turn, may be influenced by ocean warming and acidification. To understand these impacts, we exposed early-development Pacific oyster spat to different temperatures (18°C and 24°C) and pCO2 levels (800, 1,600, and 2,800 µatm) in a fully crossed design for 3 weeks. Under all conditions, the microbiome changed over time, with a large decrease in the relative abundance of potentially pathogenic ciliates (Uronema marinum) in all treatments with time. The microbiome composition differed significantly with temperature, but not acidification, indicating that Pacific oyster spat microbiomes can be altered by ocean warming but is resilient to ocean acidification in our experiments. Microbial taxa differed in relative abundance with temperature, implying different adaptive strategies and ecological specializations among microorganisms. Additionally, a small proportion (~0.2% of the total taxa) of the relatively abundant microbial taxa were core constituents (>50% occurrence among samples) across different temperatures, pCO2 levels, or time. Some taxa, including A4b bacteria and members of the family Saprospiraceae in the phyla Chloroflexi (syn. Chloroflexota) and Bacteroidetes (syn. Bacteroidota), respectively, as well as protists in the genera Labyrinthula and Aplanochytrium in the class Labyrinthulomycetes, and Pseudoperkinsus tapetis in the class Ichthyosporea were core constituents across temperatures, pCO2 levels, and time, suggesting that they play an important, albeit unknown, role in maintaining the structural and functional stability of the Pacific oyster spat microbiome in response to ocean warming and acidification. These findings highlight the flexibility of the spat microbiome to environmental changes.IMPORTANCEPacific oysters are the most economically important and widely farmed species of oyster, and their production depends on healthy oyster spat. In turn, spat health and productivity are affected by the associated microbiota; yet, studies have not scrutinized the effects of temperature and pCO2 on the prokaryotic and eukaryotic microbiomes of spat. Here, we show that both the prokaryotic and, for the first time, eukaryotic microbiome of Pacific oyster spat are surprisingly resilient to changes in acidification, but sensitive to ocean warming. The findings have potential implications for oyster survival amid climate change and underscore the need to understand temperature and pCO2 effects on the microbiome and the cascading effects on oyster health and productivity.


Asunto(s)
Crassostrea , Agua de Mar , Animales , Agua de Mar/química , Concentración de Iones de Hidrógeno , Cambio Climático , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA