Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.795
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125039, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39197211

RESUMEN

A ratiometric nanosensor was developed for detecting methyl orange (MO) based on down/up-conversion luminescence achieved by a triplet-triplet annihilation upconversion luminescence (TTA-UCL) system. The probe, utilizing sensitizer and annihilator fluorophores encapsulated in nanomicelles, demonstrated high sensitivity and selectivity for MO detection. The energy transfer from UCL to MO endowed the sensor with responsive capabilities. The unaffected triplet-triplet energy transfer process maintained the phosphorescence signal constant, serving as a reference to construct the ratiometric sensor along with the UCL signal. Additionally, a smartphone-assisted colorimetric detection method was also developed based on the ratiometric sensor, enabling rapid and convenient detection of MO without the need for a spectrometer. The performance of the nanosensor in real water samples confirmed its potential for practical environmental applications.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124963, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151400

RESUMEN

Sm3+ions doped Phospho-Borate glasses were synthesized and their physical and spectroscopic parameters were studied to evaluate its potential reddish-orange emission for photonic applications. Structural investigation made through XRD analysis confirms the amorphous nature. The evaluated bonding parameters from the absorption spectral analysis confirm the ionic bonding of the Sm-O network in the prepared glasses. Four emission bands were observed from the luminescence spectra, and the HT 4G5/2 → 6H7/2 is observed at 601 nm. The oscillator strength values elucidate the intensity of the absorption bands, and the PBKZnF:Sm sample exhibits a higher oscillator strength value. The Judd-Ofelt intensity parameters were observed to trail the trend Ω4 > Ω6. > Ω2 for the majority of the samples. The CIE 1931 color chromaticity investigation confirms that the present glass samples are suitable for reddish-orange media. Barium and strontium-incorporated glasses exhibit outstanding lasing potential, which was confirmed through the efficiency of the quantum yield and some of the radiative parameters like effective bandwidth, transition probability and stimulated emission cross-section. Radiative parameters have been calculated from the luminescence spectra. Amid all transitions, 4G5/2 →6H7/2 transition has higher transition probability and higher stimulated emission cross-section values for all the prepared glass samples. Barium-incorporated glass exhibits a higher emission cross-section of 30.55 × 10-22 cm2 and a transition probability of 30.89 s-1 compared to all other glasses. The non-exponential decay profiles of the fabricated samples were plotted by examining the excitation wavelength at 402 nm and emission wavelength at 600 nm. Of all the prepared glasses, the quantum efficiency is found to be higher for the glass sample PBKSrF:Sm (65 %).

3.
Environ Res ; 262(Pt 2): 119966, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260722

RESUMEN

The removal of dyes from industrial wastewater is one of the most environmental challenges that should be addressed through sustainable technologies. In this study, a novel green and cost-effective granular from bentonite and bio-wastes of sawdust and corncob (GBSC) was prepared for sustainable treatment of acid orange 7 (AO7) dye wastewater. The d-optimal mixture method was employed to determine the optimum combination of the GBSC in terms of dye adsorption and structure stability. Characterizations of the GBSC were investigated using SEM, XRD, FTIR and BET analyses and compared with bentonite powder (BP), modified bentonite powder (MBP), and granular modified bentonite (GMB). According to the results, a mixture of bentonite 60 wt%, sawdust 20 wt% and corncob 20 wt% at 550 °C yielded the optimal combination of the GBSC which resulted to the highest adsorption capacity 135.22 mg/g, the lowest mass loss 3.1% and maximum crushing strength 12.275 N. The kinetic and isotherm of the adsorption data were fitted well by the pseudo-second-order model and Langmuir isotherm. Our finding suggested a green circular economy model by utilizing agriculture wastes (sawdust and corncob) to synthesize GBSC for sustainable dye wastewater treatment, which offers a cost-effective adsorbent (0.907 $/g) with high regeneration (4 times reusability with 40.5% removal rate) to keep them in circulation for as long as possible.

4.
Materials (Basel) ; 17(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274696

RESUMEN

In this study, we prepared a low-cost novel Cu/Cu2O/BC nanocomposite visible-light photocatalyst by the impregnation method using CuSO4·5H2O and rice husk biochar (BC) as raw materials and Na2S2O4 as a single reductant to improve the stability and dispersion of the Cu/Cu2O nanoparticles, in order to solve their aggregation tendency during photocatalysis. The morphology and structure of the Cu/Cu2O/BC were characterized using various analytical and spectroscopic techniques. The photocatalytic effect and cyclic stability of the synthesized photocatalyst on methyl orange (MO) removal were investigated under visible light radiation and various parameter conditions, including the mass ratio of BC to Cu/Cu2O, initial MO concentration, pH, temperature, and catalyst dosage. The results show that the synthesized Cu/Cu2O/BC nanocomposite composed of Cu/Cu2O spherical particles was loaded on the BC carrier, which has better stability and dispersion. The best adsorption-photocatalytic effect of the Cu/Cu2O/BC is exhibited when the mass ratio of BC to Cu/Cu2O is 0.2. A total of 100 mg of Cu/Cu2O/BC can remove 95% of the MO and 88.26% of the COD in the aqueous solution at pH = 6, T = 25 °C, and an initial MO concentration of 100 mg/L. After five cycles of degradation, the MO degradation rate in the sample can still remain at 78.41%. Both the quasi-secondary kinetic model and the Langmuir isothermal adsorption model describe the adsorption process. Additionally, the thermodynamic analysis demonstrates that the photocatalytic process follows the quasi-primary kinetic model and that the removal process is of spontaneous heat absorption. The photocatalyst described in this paper offers a cost-effective, easily prepared, and visible-light-responsive solution for water pollution treatment.

5.
Environ Sci Pollut Res Int ; 31(42): 55035-55045, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222232

RESUMEN

Nanoribbons (NRs), leveraging the flexibility of one-dimensional materials and the expansive surface area of two-dimensional materials, offer heightened exposure to edge sites and superior charge transfer rates. Consequently, they present promising prospects within the domain of photocatalysis. Crystalline red phosphorus (cRP), dcharacterized by its layered and fibrous structure, lends itself readily to the production of nanoribbons. Our study demonstrates a robust method for achieving high-yield, high-quality cRP by concurrently introducing mineralizing agent I2 and Si wafers into the Chemical Vapor Transport (CVT) synthesis process. Through ultrasound assistance, we transformed high-quality cRP into crystalline red phosphorus nanoribbons (cRP NRs) with an average thickness ranging from 7.5 to 17.5 nm and an average width between 75 and 175 nm. cRP NRs (I2 and Si) showcased impressive degradation capabilities towards Methyl Orange (MO) and Tetracycline (TC), achieving a remarkable 99% degradation of MO within 18 min under the simulated visible-light irradiation. The reactive species capturing experiments confirmed that ·O2- was the primary active agent responsible for the photocatalytic degradation of MO.


Asunto(s)
Compuestos Azo , Fósforo , Tetraciclina , Tetraciclina/química , Fósforo/química , Compuestos Azo/química , Catálisis , Nanotubos de Carbono/química
6.
Small ; : e2404442, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224046

RESUMEN

Li2SrSiO4:Eu2+ is a promising substitute for traditional Y3Al5O12:Ce3+ (YAG:Ce3+) owing to its strong orange-yellow emission of 4f-5d transition originating from Eu2+ dopant, covering the more red-light region. However, its inevitable luminescence thermal quenching at high temperatures and the self-oxidation of Eu2+ strongly impede their applications. Their remediation remains highly challenging. Herein, an anti-self-oxidation(ASO) concept of Eu2+ in Li2SrSiO4 substrate by adding trivalent rare-earth ions (A3+: A = La, Gd, Y, Lu) for highly efficient and stable orange-yellow light emission have been proposed. A significantly increased orange-yellow emission (202% improvement) from Li2Sr0.95A0.05SiO4:Eu2+ with a wide range near-zero thermal quenching is obtained, superior to other Eu2+ activated phosphors. The presence of A3+ ions with various radii modifies the ASO degree of Eu2+ ions, achieving the tunable chemical state, composition, electronic configuration, crystal-field strength, and luminescent characteristics of the developed phosphors. For the proof of the concept, a W-LED device and a PDMS (Polydimethylsiloxane) luminescent film are fabricated, endowing excellent luminescence performance and thermal stability and the huge application prospects of Li2SrSiO4:Eu2+ in lighting and display fields.

7.
Food Microbiol ; 124: 104597, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39244376

RESUMEN

Alicyclobacillus spp. is a potential spoiling agent of acidic products and citrus drinks, leading to sensory alterations in contaminated products and consequent economic losses. Treatments such as pasteurization eliminate vegetative cells, but also create a favorable atmosphere for spore germination. To guarantee quality and safety, the application of natural substances as bioconservatives is a considerable and promising alternative for the food industry. This study evaluated the effect of hexane extract of Matricaria chamomilla L. (HE), Nisin (N) and their combination (HE + N). These compounds are present in some studies describing their antibacterial action, but no studies were found on the association of these compounds against the species Alicyclobacillus spp. This study aimed to analyze the antioxidant activity (AA) for the DPPH• (0,23 µmol Trolox/mg) and ABTS (27.93 µmol Trolox/mg), the Checkboard test revealed synergism between HE and N with a fractional inhibitory index (FIC) of 0.068., and to study the antibacterial and sporicidal effect. The antibacterial and sporicidal activity was satisfactory against Alicyclobacillus acidoterrestris with MIC and MBC of 1.95 µg/mL and MSC of 7.81 µg/mL in analyzes using HE + N. The application in orange juice proved to be effective, with an MBC of 0.007 µg/mL. The MIC results served as a parameter for other tests carried out in this study, such as flow cytometry and Scanning Electron Microscopy (SEM), and for the evaluation of sensory characteristics with Electronic Nose (E-nose).


Asunto(s)
Alicyclobacillus , Antibacterianos , Matricaria , Pruebas de Sensibilidad Microbiana , Nisina , Extractos Vegetales , Nisina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Alicyclobacillus/efectos de los fármacos , Alicyclobacillus/crecimiento & desarrollo , Matricaria/química , Antioxidantes/farmacología , Antioxidantes/química
8.
Front Microbiol ; 15: 1425441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268534

RESUMEN

Introduction: Reactive oxygen species (ROS) generation is a common disease defense mechanism in plants. However, it is unclear whether Citrus host activates defense response against Diaporthe citri causing citrus melanose disease by producing ROS, and the underlying molecular mechanisms are unknown. Methods: DAB staining and RNA-Seq technology were used to compare the active oxygen burst and differential gene expression, respectively, in uninfected and infected Citrus sinensis leaves at different time points during D. citri infection in vivo. The functions of CsRBOH (a significant DEG) were confirmed in N. benthamiana through the Agrobacterium-mediated transient expression system. Results: DAB staining indicated that C. sinensis initiated defense against D. citri infection within 24 h by generating ROS. Illumina sequencing revealed 25,557 expressed genes of C. sinensis. The most upregulated DEGs (n = 1,570) were identified 72 h after fungal inoculation (sample denoted as CD72). In the CD72 vs. Cs (samples at 0 h after fungal inoculation) comparison, the KEGG pathway category with the highest number of genes (n = 62) and most significant enrichment was Protein processing in endoplasmic reticulum, followed by Glutathione metabolism and MAPK signaling pathway-plant. GO analysis revealed that the DEGs of CD72 vs. Cs related to active oxygen burst and chitin recognition were significantly grouped into the regulation of biological processes and molecular functions, with GO terms including response to ROS, response to fungus, and oxidoreductase activity. Remarkably, CsRBOH was significantly enriched in the GO and KEGG analyses, and its expression pattern in qRT-PCR and DAB staining results were consistent. Among the 63 ROS-related DEGs, HSP genes and genes associated with the peroxidase family were highly significant as revealed by protein-protein interaction networks. Furthermore, ROS accumulation, cell death, and upregulation of defense-related genes were observed in N. benthamiana leaves with CsRBOH expressed through the Agrobacterium-mediated transient expression system. Conclusion: Our findings suggested that C. sinensis activates CsRBOH and ROS-related genes, leading to ROS accumulation to resist the invasion by D. citri. This study laid the foundation for future research on molecular mechanisms and breeding of C. sinensis cultivars resistant to citrus melanose.

10.
J Econ Entomol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257088

RESUMEN

Examining the host range of emerging invasive insects is essential to assess their invasion potential and to anticipate the negative impacts of their spread. The ongoing North American invasion of spotted lanternfly (SLF) [Lycorma delicatula (White, 1845)] threatens agricultural, urban, and natural areas. The survival and development of SLF nymphs on Washington navel orange [Citrus sinensis (L.) Osbeck (Sapindales: Rutaceae)] trees were assessed in a quarantine facility. Results indicated that SLF nymphs can develop to at least the third instar by feeding exclusively on Washington navel orange. This finding suggests that, at least up to the third stage of nymphal development, Washington navel orange might be a suitable host for SLF, highlighting the possibility that this invasive pest represents an unrecognized threat to this globally important crop and possibly to other Citrus species.

11.
J Ultrasound Med ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39257135

RESUMEN

OBJECTIVES: In the treatment of acute myeloid leukemia (AML), conventional therapies can lead to severe side effects and drug resistance. There is a need for alternative treatments that do not cause treatment resistance and have minimal or no side effects. Sonodynamic therapy (SDT), due to its noninvasive, multiple repeatability, localized treatment feature and do not cause treatment resistance, emerges as an alternative treatment option. However, it has not received sufficient attention in the treatment of AML especially acute promyelocytic leukemia (APL). The aim of the study was to investigate the potential differentiation and antileukemic effects of acridine orange (AO)-mediated SDT on HL60 cells. METHODS: Cell viability was determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) method in the control, ultrasound, AO concentrations, and ultrasound-exposed AO concentrations groups. Transmission electron microscopy (TEM) was used to determine morphology, and flow cytometry was used to determine apoptosis, DNA cycle, cell volume, mitochondria membrane potential (Δψm), reactive oxygen species (ROS) production, and differentiation markers (CD11b and CD15) expressions. Additionally, toluidine blue staining for semithin sections was used to determine differentiation. RESULTS: The cytotoxicity of AO-mediated SDT on HL60 cells was significantly higher than other groups, and TEM images showed that it caused various morphological changes typical for apoptosis. Flow cytometry results showed the presence of early apoptosis, subG1 arrest, loss of Δψm, increase of intracellular ROS production, decreased cell volume, and increased expression of CD11b (1.3-fold) antigen and CD15 (1.2-fold) antigen. CONCLUSION: Data showed that AO-mediated SDT significantly induced apoptosis in HL60 cells. Increased expression of CD11b and CD15 antigens and morphological findings demonstrated that AO-mediated SDT contributes to granulocytic differentiation in HL60 cells. AO-mediated SDT has potential as an alternative treatment of APL.

12.
Food Chem ; 463(Pt 1): 141107, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265402

RESUMEN

Rapid and accurate detection of Burkholderia gladioli (B. gladioli) and effective sterilization are crucial for ensuring food safety. Hence, a novel "loong frolic pearls" platform based on platinum-based fluorescent nanozymes (Pt-OCDs) and strand exchange amplification (SEA) was reported. Magnetic nanoparticles were modified on primer SEAF, while Pt-OCDs were covalently coupled with primer SEA-R. The highly efficient amplification capability of SEA permitted the accumulation of a large number of double-labeled amplicons. After magnetic adsorption, the supernatant was detected in reverse direction to collect colorimetric-fluorescence-photothermal signal values, enabling ultra-precise detection within 1 h. Furthermore, the Pt-based multifunctional nanoplatform generated abundant •OH and 1O2, which synergistically attacked B. gladioli and its biofilm, resulting in significant bactericidal efficacy within 30 min. This "triple-detection and double-sterilization" platform has been successfully applied in the field of food analysis with good recovery rates and immediate control over B. gladioli, thus demonstrating promising prospects for broad applications.

13.
Nat Prod Res ; : 1-5, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234994

RESUMEN

This study aimed to investigate the antioxidant, anti-inflammatory, antifungal, and antibacterial properties of skin and Flesh methanol extract and essential oil of two varieties of species of Citrus sinensis L in Iran (northern and southern oranges). This study evaluated total phenol and flavonoid contents and the antioxidant activity of methanol extracts at different concentrations (25, 50, 100, 200, and 400 µg/ml). Albumin denaturation inhibition and RBC membrane immobilisation assays were used as an in vitro model to investigate the anti-inflammatory effects. Based on the results, the highest phenol and flavonoid contents and antioxidant activity were related to the northern orange skin. This extract also had the most significant impact on albumin denaturation inhibition and RBC membrane immobilisation by IC50 of 365 ± 12 µg/ml and 940 ± 22 µg/ml, respectively. In antimicrobial assays, only the skin and flesh of northern orange positively affected Gram-positive bacteria.

14.
Biometals ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235582

RESUMEN

Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV-Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40-60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.

15.
Food Sci Technol Int ; : 10820132241278220, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219490

RESUMEN

Fortification of yogurt with orange pulp tends to increase its protein network strength resulting in reduced syneresis. The aim of the current study was to prepare set-type orange yogurt with cow milk, skim milk powder, guar gum, and orange pulp at 0%, 1.0%, 2.0%, 3.0%, and 4.0% concentrations, respectively. The changes in proximate, total soluble solid, antioxidant activity, ascorbic acid, and syneresis were assessed. Yogurt was stored for consecutive three weeks during that duration all attributes were evaluated weekly. Set-type orange pulp incorporated yogurt significantly increased the fat (3.91% to 4.9%), protein (3.90% to 3.94%), moisture (84% to 84.80%), total soluble solids (16.01% to 18.51%), ascorbic acid (16.99% to 20.43%), and syneresis (28.90% to 29.94%), respectively. Overall results indicate that 4% orange pulp-enriched set-type yogurt presented more stable parameters as compared to other formulas.

16.
Environ Res ; 261: 119727, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117052

RESUMEN

The study focuses on reactive orange 16 (RO16), a sulfonated dye, and ciprofloxacin (CiP), a fluoroquinolone antibiotic treatment from aquatic surface by adsorption. The functionalized Persea americana seed powder (PASP) was developed by acid hydrolysis technique and investigated for RO16 and CiP removal in batch scale at different concentrations for CiP and RO16, pH (2-8), contact duration and temperature (303-318K). Utilizing a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDAX), the generated native PASP were assessed for their morphological characteristics. Fourier transform infrared (FTIR) spectroscopy was applied to examine the performing characteristics of PASP. Experimental findings with four kinetic mathematical models allowed the estimation of the process involved in the biosorption. The most effective agreement was explained by the pseudo-second-order model and Sips isotherm (Cip = 34.603 mg/g and RO16 = 30.357 mg/g) at 303K temperature. For Cip Process economics of the biosorbent was done, and it was observed that it was less than the readily market-available activated carbon.


Asunto(s)
Antibacterianos , Colorantes , Semillas , Contaminantes Químicos del Agua , Semillas/química , Cinética , Colorantes/química , Colorantes/análisis , Contaminantes Químicos del Agua/análisis , Fluoroquinolonas/química , Adsorción , Polvos , Ciprofloxacina/química
17.
J Fungi (Basel) ; 10(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39194879

RESUMEN

Monascus is a filamentous fungus with a long history of application in China, which can produce a variety of secondary metabolites, including Monascus red pigments, Monascus orange pigments, Monascus yellow pigments, and citrinin. There is widespread attention being paid to natural pigments because of their safety. Among the many natural pigments, orange pigment has a wide range of applications because of its unique color, but current production levels in the orange pigment industry are limited to a certain extent due to the insufficiently wide range of sources and low production. In this study, the ARTP mutation was used to obtain a strain with high-yield orange pigment and low citrinin. The strain RS7 was obtained through two-step mutagenesis, and all three pigments were improved to different degrees. The color value of orange pigment was elevated from the original 108 U/mL to 180 U/mL, an increase of 66.7% compared to the original strain, and the citrinin content was reduced by 69%. The result of microscopic morphology showed that RS7 has more wrinkles and is more convex than the R1 strain, but there was little change between the two strains. Therefore, the ARTP mutation influenced the growth and the biosynthesis of pigments in Monascus. In addition, the conditions of ultrasonic extraction of Monascus pigments were optimized using the response surface, and the separation of pigments was achieved with the method of thin-layer chromatography. Pigment stability results showed that the temperature had no significant effect on orange pigment, while tea polyphenol could improve its stability. This study generated a strain with high-yielding orange pigment and could lay a foundation for the future application of Monascus orange pigment in the food industry.

18.
Environ Sci Pollut Res Int ; 31(40): 53121-53134, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39179887

RESUMEN

In the current study, silver nanoparticles (AgNPs) incorporated Polyamide 66 (PA66) nanofiber mat as a photocatalyst which was prepared using electrospinning technique for degradation of methyl orange (MO). Considering the lack of reported studies on the influence of the ultrasonication on the size and stability of AgNPs, the purpose of the study was to produce a small size of AgNPs and compare it with the continuous stirring method. It is reasonable to report that the advantage of ultrasonication is to generate relatively smaller AgNPs (u-AgNPs) compared to fabrication by continuous stirring method (s-AgNPs). Helichrysum arenarium (HA) extract was used as a reducing agent as well as a capping agent in green synthesis of AgNPs. AgNPs were characterized by UV-visible spectrophotometry, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and transmission electron microscope (TEM). PA66/u-AgNs nanofibers were then successfully electrospun and characterized by using scanning electron microscope (SEM), FT-IR, thermal gravimetric analysis (TGA), and water contact angle measurement (WCA). Fabricated PA66-based nanofiber mat with smooth surface and uniform diameters (330-340 nm) was used as a catalyst in MO degradation. PA66/u-AgNP nanofibers were also evaluated for antibacterial performance and showed significant inhibition against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria. According to these findings, it is expected that the fabricated novel PA66/u-AgNP nanofibers can be announced as a promising potent and applied to the wastewater applications.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Nanofibras , Plata , Nanofibras/química , Plata/química , Nanopartículas del Metal/química , Antibacterianos/química , Antibacterianos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Compuestos Azo/química , Colorantes/química
19.
Environ Sci Pollut Res Int ; 31(40): 53399-53409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190250

RESUMEN

In the current work, the adsorption of acid black 1 (AB1), a hair dye, and methyl orange (MO) on anion exchange membrane BII (AEM-BII) in a binary system was studied experimentally. The effects study for contact time, adsorbent's and adsorbates' concentration, and temperature of aqueous media on the AB1 and MO removal, AEM-BII recovery, and reusability were also investigated. The highest removal was observed at optimum conditions, 150-min contact time and 5 g L-1 of adsorbent for AB1 (91.2%) and MO (83.4%). Adsorption kinetics was estimated by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetics. The experimental findings were fitted well by PSO kinetics with an adsorption capacity of 19.45 ± 0.93 and 19.34 ± 0.84 mg g-1 for ABI and MO, respectively. Moreover, the adsorption isotherm study confirmed that AB1 and MO adsorption by AEM-BII from the binary system was followed by Langmuir isotherms. Adsorption thermodynamics revealed that adsorption of both AB1 and MO by AEM-BII was endothermic and spontaneous. Moreover, the desorption phenomenon of ABI and MO from the loaded AEM-BII showed that dye removal from AEM-BII was found to be 74.95%, demonstrating AEM-BII can be considered as good adsorbent for acidic dyes from the binary system.


Asunto(s)
Colorantes , Termodinámica , Contaminantes Químicos del Agua , Cinética , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Compuestos Azo/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
20.
J Hazard Mater ; 478: 135362, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116744

RESUMEN

Although the anaerobic reduction of azo dyes is ecofriendly, high ammonia consumption remains a significant challenge. This work enriched a mixed nitrogen-fixing bacteria consortium (NFBC) using n-Fe3O4 to promote the anaerobic reduction of methyl orange (MO) without exogenous nitrogen. The enriched NFBC was dominated by Klebsiella (80.77 %) and Clostridium (17.16 %), and achieved a 92.7 % reduction of MO with an initial concentration of 25 mg·L-1. Compared with the control, the consortium increased the reduction efficiency of MO, cytochrome c content, and electron transport system (ETS) activity by 11.86 %, 89.86 %, and 58.49 %, respectively. When using 2.5 g·L-1 n-Fe3O4, the extracellular polymeric substances (EPS) of NFBC were present in a concentration of 85.35 mg·g-1. The specific reduction rates of MO by NFBC were 2.26 and 3.30 times faster than those of Fe(II) and Fe(III), respectively, while the enrichment factor of the ribosome pathway in NFBC exceeded 0.75. Transcriptome, carbon consumption, and EPS analyses suggested that n-Fe3O4 stimulated carbon metabolism and secreted protein synthesized by the mixed culture. The latter occurred due to the increased activity of consortium and the content of redox substances. These findings demonstrate that n-Fe3O4 promoted the efficiency of mixed nitrogen-fixing bacteria for removing azo dyes from wastewater. This innovative approach highlights the potential of integrating nanomaterials with biological systems to effectively address complex pollution challenges.


Asunto(s)
Compuestos Azo , Bacterias Fijadoras de Nitrógeno , Oxidación-Reducción , Compuestos Azo/metabolismo , Compuestos Azo/química , Bacterias Fijadoras de Nitrógeno/metabolismo , Colorantes/metabolismo , Colorantes/química , Contaminantes Químicos del Agua/metabolismo , Compuestos Férricos/metabolismo , Compuestos Férricos/química , Consorcios Microbianos , Anaerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA