Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Sci Total Environ ; 954: 176272, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278500

RESUMEN

In recent years, organophosphate esters (OPEs) have been widely produced and used as flame retardants and plasticizer additives, posing significant ecological and health risks. Dietary intake is considered to be the primary route of human exposure to OPEs. Plastic food packaging materials are considered a crucial source for contamination of OPEs in food. However, the migration behaviour of OPEs from plastic food packaging materials into foods has received limited attention. In this study, we employed a novel method to prepare migration donors containing 13 kinds of OPEs. The migration behaviours of OPEs from food packaging simulants (polypropylene) to foods (full-fat milk powder) were simulated, and factors influencing the migration of OPEs were examined, including the properties of the target compounds, migration temperature, fat content of the migration receptors, and mass transfer mode. The results indicated that OPEs exhibited a significant migration tendency. Low molecular weight OPEs (< 300 Da) had faster migration efficiency compared to high molecular weight OPEs. The mean migration efficiencies of various OPEs showed a significant negative correlation with their molecular weights (p < 0.01) and a significant positive correlation with temperature (p < 0.01). Except for resorcinol bis(diphenyl phosphate) (RDP), which showed almost no migration, the mean migration efficiencies of other OPEs at 25 °C, 40 °C, and 60 °C were 3.1-37.5 %, 9.0-60.0 %, and 23.9-80.4 %, respectively. Most of the OPEs demonstrated higher migration efficiency in high-fat content food than low-fat content food. The migration of OPEs from food packaging simulants to foods primarily occurred through contact rather than gas-phase mass transfer. Overall, this study uncovers the migration behaviours of OPEs from food packaging simulants to foods and scrutinized the relevant factors influencing the migration. It is expected that the research in terms of the contamination control of OPEs in food will benefit from this work.

2.
Environ Pollut ; 361: 124803, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39181304

RESUMEN

Isodecyl diphenyl phosphate (IDDP) is among the emerging aromatic organophosphate esters (aryl-OPEs) that pose risks to both human beings and other organisms. This study aims to investigate the translocation and biotransformation behavior of IDDP in rice and the rhizosphere microbiome through hydroponic exposure (the duration of hydroponic exposure was 10 days). The rhizosphere microbiome 9-FY was found to efficiently eliminate IDDP, thereby reducing its uptake in rice tissues and mitigating the negative impact of IDDP on rice growth. Furthermore, this study proposed the first-ever transformation pathways of IDDP, identifying hydrolysis, hydroxylation, methylation, methoxylation, carboxylation, and glucuronidation products. Notably, the methylation and glycosylation pathways were exclusively observed in rice, indicating that the transformation of IDDP in rice may be more complex than in microbiome 9-FY. Additionally, the presence of the product COOH-IDDP in rice suggested that there might be an exchange of degradation products between rice and rhizobacteria, implying their potential interaction. This finding highlights the significance of rhizobacteria's role which cannot be overlooked in the accumulation and transformation of organic pollutants in grain crops. The study revealed active members in 9-FY during IDDP degradation, and metagenomic analysis indicated that most of the active populations contained IDDP-degrading genes. Moreover, transcriptome sequencing showed that cytochrome P450, acid phosphatase, glucosyltransferase, and methyltransferases genes in rice were up-regulated, which was further confirmed by RT-qPCR. This provides insight into the intermediate products identified in rice, such as hydrolysis, hydroxylated, glycosylated, and methylated products. These results significantly contribute to our understanding of the translocation and transformation of organophosphate esters (OPEs) in plants and the rhizosphere microbiome, and reveal the fate of OPEs in rice and microbiome system to ensure the paddy yield and rice safety.

3.
J Environ Manage ; 367: 122106, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111006

RESUMEN

Organophosphate esters (OPEs) serve as significant flame retardants and plasticizers in various petrochemical downstream products. The petrochemical industry could be a potential source of atmospheric OPEs, but their emissions from this industry are poorly understood. The present study revealed the spatial variation, emission, and atmospheric transport of traditional and novel OPEs (TOPEs and NOPEs, respectively) in atmospheric particulate matter (PM) across Hainan and Guangdong petrochemical complexes (HNPC and GDPC, respectively) in southern China. The total concentrations of TOPEs ranged from 232 to 46,002 pg/m3 and from 200 to 20,347 pg/m3 in the HNPC and GDPC, respectively, which were substantially higher than those of NOPEs (HNPC: 23.5-147 pg/m3, GDPC: 13.9-465 pg/m3). Enterprises involved in the production of downstream petrochemical products presented relatively high concentrations of OPEs, indicating evident emissions of these pollutants in the petrochemical industry. The correlations of PM-bound OPEs in the atmosphere are determined mainly by their coaddition to industrial products or their coexistence in technical mixtures. The annual emissions of TOPEs and NOPEs in the HNPC were 42.6 kg and 0.34 kg, respectively, and those in the GDPC were 116 kg and 1.85 kg, respectively. OPEs from the HNPC can reach Vietnam, Cambodia, and Guangxi Province, China, and those from the GDPC can reach Guangxi Province and Hunan Province via atmospheric transmission after 24 h of emission. The OPE concentrations reaching the receptor regions were generally less than 3.20 pg/m3. Risk assessment revealed that OPE inhalation exposure on two petrochemical complexes likely poses minor risks for people living in the study areas, but the risk resulting from two chlorinated OPEs should be noted since they are close to the threshold values. This study has implications for enhancing control measures for OPE emissions to reduce health risks related to the petrochemical industry.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , China , Ésteres/análisis , Medición de Riesgo , Organofosfatos/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Retardadores de Llama/análisis
4.
Environ Sci Technol ; 58(32): 14506-14517, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39087809

RESUMEN

With the development of large numbers of novel organophosphate esters (OPEs) alternatives, it is imperative to screen and identify those with high priority. In this study, surface water, biofilms, and freshwater snails were collected from the flow-in rivers of Taihu Lake Basin, China. Screened by target, suspect, and nontarget analysis, 11 traditional and 14 novel OPEs were identified, of which 5 OPEs were first discovered in Taihu Lake Basin. The OPE concentrations in surface water ranged from 196 to 2568 ng/L, with the primary homologue tris(2,4-ditert-butylphenyl) phosphate (TDtBPP) being newly identified, which was likely derived from the transformation of tris(2,4-ditert-butylphenyl) phosphite. The majority of the newly identified OPEs displayed substantially higher bioaccumulation and biomagnification potentials in the biofilm-snail food chain than the traditional ones. Quantitative structure-property relationship models revealed both hydrophobicity and polarity influenced the bioaccumulation and biomagnification of the OPEs, while electrostatic attraction also had a contribution to the bioaccumulation in the biofilm. TDtBPP was determined as the utmost priority by toxicological priority index scheme, which integrated concentration, bioaccumulation, biomagnification, acute toxicity, and endocrine disrupting potential of the identified OPEs. These findings provide novel insights into the behaviors of OPEs and scientific bases for better management of high-risk pollutants in aquatic ecosystem.


Asunto(s)
Ésteres , Organofosfatos , Contaminantes Químicos del Agua , Relación Estructura-Actividad Cuantitativa , Animales , Monitoreo del Ambiente , China , Caracoles
5.
J Hazard Mater ; 478: 135519, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151362

RESUMEN

Despite growing concerns regarding the long-range transport (LRT) and ecological risks of organophosphate esters (OPEs), information on the environmental behaviors of OPEs in polar terrestrial ecosystems remains inadequate. In the present study, 10 OPEs were analyzed in soil and vegetation samples collected from Fildes Peninsula, Antarctica. The OPE concentrations in Antarctic soils, mosses, and lichens ranged from 0.87 to 15.7 ng/g dry weight (dw), 9.8 to 113 ng/g dw, and 3.6 to 75.2 ng/g dw, respectively. Non-chlorinated OPEs predominated in terrestrial matrices, accounting for approximately 76 % of the OPE composition. Source identification indicated that OPE contamination in Antarctica likely resulted from local anthropogenic sources and LRT. Moreover, the bioaccumulation behavior of OPEs from soil to vegetation was assessed using bioconcentration factors (BCFs), revealing a significant non-linear trend of initial increase and subsequent decrease in BCFs relative to the lipophilicities of the octanol-air partition coefficient (log KOA) and octanol-water partition coefficient (log KOW). While low levels of OPEs in Antarctic terrestrial environments were reported in this study, their sustained inputs and potential ecological risks in polar regions warrant further attention.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Líquenes , Organofosfatos , Regiones Antárticas , Organofosfatos/análisis , Organofosfatos/metabolismo , Líquenes/química , Líquenes/metabolismo , Ésteres/análisis , Briófitas/química , Briófitas/metabolismo , Bioacumulación , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Suelo/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo
6.
J Agric Food Chem ; 72(35): 19312-19322, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166886

RESUMEN

This study investigated the uptake pathways, acropetal translocation, subcellular distribution, and biotransformation of OPEs by rice (Oryza sativa L.) after Cu exposure. The symplastic pathway was noted as the major pathway for the uptake of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) by rice roots. Cu exposure enhanced the accumulation of tri-OPEs in rice roots, and such enhancement was positively correlated with Cu concentrations, attributing to the Cu-induced root damage. The hydrophilic Cl-OPEs in the cell-soluble fraction of rice tissues were enhanced after Cu exposure, while the subcellular distributions of alkyl- and aryl-OPEs were not affected by Cu exposure. Significantly higher biotransformation rates of tri-OPEs to di-OPEs occurred in leaves, followed by those in stems and roots. Our study reveals the mechanisms associated with the uptake, translocation, and biotransformation of various OPEs in rice after Cu exposure, which provides new insights regarding the phytoremediation of soils cocontaminated with heavy metal and OPEs.


Asunto(s)
Biodegradación Ambiental , Biotransformación , Cobre , Organofosfatos , Oryza , Raíces de Plantas , Contaminantes del Suelo , Oryza/metabolismo , Oryza/química , Oryza/efectos de los fármacos , Cobre/metabolismo , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Organofosfatos/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Ésteres/metabolismo , Ésteres/química
7.
Sci Total Environ ; 948: 174620, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38992381

RESUMEN

Organophosphate esters (OPEs) have proven to be pervasive in aquatic environments globally. However, understanding their partitioning behavior and mechanisms at the sediment-water interface remains limited. This study elucidated the spatial heterogeneity, interfacial exchange, and diffusion mechanisms of 14 OPEs (∑14OPEs) from river to coastal aquatic system. The transport tendencies of OPEs at the sediment-water interface were quantitatively assessed using fugacity methods. The total ∑14OPEs concentrations in water and sediments ranged from 154 ng/L to 528 ng/L and 2.41 ng/g dry weight (dw) to 230 ng/g dw, respectively. This result indicated a descending spatial tendency with moderate variability. OPE distribution was primarily influenced by temperature, pH, and dissolved oxygen levels. As the carbon atom number increased, alkyl and chlorinated OPEs transitioned from diffusion towards the aqueous phase to equilibrium. In contrast, aryl OPEs and triphenylphosphine oxide, which had equivalent carbon atom counts, maintained equilibrium throughout. Diffusion trends of individual OPE congener at the sediment-water interface varied at the same total organic carbon contents (foc). As the foc increased, the fugacity fraction values for all OPE homologs showed a declining trend. The distinct molecular structure of each OPE monomer might lead to unique diffusive behaviors at the sediment-water interface. Higher soot carbon content had a more pronounced effect on the distribution patterns of OPEs. The sediment-water distribution of OPEs was primarily influenced by total organic carbon, sediment particle size, dry density, and moisture content. OPEs displayed the highest sensitivity to fluctuations in ammonium and dissolved organic carbon. This study holds significant scientific and theoretical implications for elucidating the interfacial transport and driving forces of OPEs and comprehending their fate and endogenous release in aquatic ecosystems.

8.
Sci Total Environ ; 947: 174569, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977092

RESUMEN

BACKGROUND: Organophosphate esters (OPEs) exposure could affect offspring health. However, the underlying mechanisms are not well documented. OBJECTIVES: Based on a birth cohort study, we aimed to investigate the associations among gestational OPEs exposure, placental DNA methylation levels of peroxisome proliferator-activated receptor (PPAR) signaling pathway-related genes, and fetal growth. METHODS: We measured the concentrations of eight OPE metabolites in maternal urine samples and neonatal anthropometric measurements in 733 mother-child pairs. In 327 placental samples, we assessed the DNA methylation levels of 14 genes which were involved in the PPARs signaling pathway and expressed in placenta. Multiple linear regression models were used to examine the associations of OPEs exposure with placental DNA methylation, and of OPEs and placental DNA methylation with neonatal anthropometric measurements. Causal mediation analyses were conducted to examine the potential mediating role of placental DNA methylation in the pathway between OPEs exposure and fetal growth. RESULTS: We observed a general pattern of OPEs exposure being associated with hypermethylation of candidate genes, with statistically significant associations identified for several OPEs with RXRA, ACAA1, ACADL, ACADM, PLTP, and NR1H3 methylation. Further, gestational exposure to BCIPP, DPP, BBOEP, ∑NCl-OPEs, and ∑OPEs tended to be associated with lower anthropometric measurements, with more significant associations observed on arm circumference, and abdominal and back skinfold thickness. Notably, RXRA, ACAA1, ACOX1, CPT2, ACADM, and NR1H3 methylation tended to be associated with lower neonatal anthropometric measurements, especially for abdominal and back skinfold thickness. Moreover, mediation analyses showed that 19.42 % of the total effect of DPP on the back skinfold thickness was mediated by changes in RXRA methylation, and there was a significant indirect effect of RXRA methylation. CONCLUSIONS: Gestational OPEs exposure could disrupt the placental DNA methylation levels of PPAR signaling pathway-related genes, which might contribute to the effect of OPEs on fetal growth.


Asunto(s)
Metilación de ADN , Exposición Materna , Organofosfatos , Receptores Activados del Proliferador del Peroxisoma , Placenta , Transducción de Señal , Femenino , Embarazo , Humanos , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Placenta/metabolismo , Ésteres , Adulto , Desarrollo Fetal/efectos de los fármacos , Estudios de Cohortes , Recién Nacido , Contaminantes Ambientales
9.
Ecotoxicol Environ Saf ; 280: 116524, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838464

RESUMEN

BACKGROUND: Organophosphate esters (OPEs) and Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with common exposure sources, leading to their widespread presence in human body. However, evidence on co-exposure to OPEs and PFAS and its impact on cardiovascular-kidney-liver-metabolic biomarkers remains limited. METHODS: In this cross-sectional study, 467 adults were enrolled from January to May 2022 during physical visits in Shijiazhuang, Hebei province. Eleven types of OPEs and twelves types of PFAS were detected, among which eight OPEs and six PFAS contaminants were detected in more than 60% of plasma samples. Seventeen biomarkers were assessed to comprehensively evaluate the cardiovascular-kidney-liver-metabolic function. Multiple linear regression, multipollutant models with sparse partial least squares, and Bayesian kernel machine regression (BKMR) models were applied to examine the associations of individual OPEs and PFAS and their mixtures with organ function and metabolism, respectively. RESULTS: Of the over 400 exposure-outcome associations tested when modelling, we observed robust results across three models that perfluorohexanoic acid (PFHxS) was significantly positively associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and indirect bilirubin (IBIL). Perfluorononanoic acid was significantly associated with decreased AST/ALT and increased very-low-density lipoprotein cholesterol levels. Besides, perfluorodecanoic acid was correlated with increased high lipoprotein cholesterol and perfluoroundecanoic acid was consistently associated with lower glucose level. BKMR analysis showed that OPEs and PFAS mixtures were positively associated with IBIL and TBIL, among which PFHxS was the main toxic chemicals. CONCLUSIONS: Our findings suggest that exposure to OPEs and PFAS, especially PFHxS and PFNA, may disrupt organ function and metabolism in the general population, providing insight into the potential pathophysiological mechanisms of OPEs and PFAS co-exposure and chronic diseases.


Asunto(s)
Biomarcadores , Contaminantes Ambientales , Ésteres , Fluorocarburos , Riñón , Hígado , Organofosfatos , Humanos , Biomarcadores/sangre , Femenino , Masculino , Estudios Transversales , Adulto , Fluorocarburos/sangre , Fluorocarburos/toxicidad , China , Persona de Mediana Edad , Contaminantes Ambientales/sangre , Hígado/efectos de los fármacos , Riñón/efectos de los fármacos , Organofosfatos/toxicidad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Caproatos , Adulto Joven , Anciano , Pueblos del Este de Asia
10.
Sci Total Environ ; 946: 174162, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909807

RESUMEN

Organophosphate esters (OPEs), increasingly used as alternatives to brominated flame retardants, are ubiquitous in the global aquatic environment. Despite their potential toxicological impact on ecosystems, community-level risk assessments for OPEs in sediments remain scarce. This study investigated OPE occurrences and composition characteristics in the Bohai Sea's sediments and appraised both individual and joint ecological risks posed by characteristic OPE homologs using ten commonly used species sensitivity distribution (SSD) models, integrating acute-to-chronic conversion and phase equilibrium partitioning. OPEs were detected across all sediment samples, with total concentrations ranging from 0.213 ng/g dry weight (dw) to 91.1 ng/g dw. The predominant congeners included tri-n-butyl phosphate (TnBP), triisobutyl phosphate (TiBP), tri(2-ethylhexyl) phosphate, tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), tris(1, 3-dichloro-2-propyl) phosphate (TDCIPP), and triphenylphosphine oxide. Best-fit SSD models varied among TnBP, TiBP, TCEP, TCPP, and TDCIPP, demonstrating Sigmoid, Burr III, Sigmoid, Burr III, and Burr III, respectively. The same parametric model demonstrated variability in the fitting process for different OPE congeners, which also happened to the fitting results of ten parametric models for the same specific characteristic congener, underscoring the necessity of employing multiple models for precise community-level risk assessments. Hazard concentrations for a 5% cumulative probability were 0.116 mg/L, 2.88 mg/L, 1.30 mg/L, 1.44 mg/L, and 1.85 mg/L for each respective congener. The resulting risk quotients (RQ) and overall hazard index (HI) were selected as criteria to assess the individual and joint ecological risks of OPEs in sediments from the Bohai Sea, respectively. RQ and HI were both below 0.1, indicating a low risk to the local ecosystems. Multi-model SSD analysis could provide refined data for community-level risk evaluation, offering valuable insights for the development of evidence-based environmental standards and pollution control strategies.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Organofosfatos , Contaminantes Químicos del Agua , China , Medición de Riesgo , Organofosfatos/análisis , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Ésteres/análisis , Retardadores de Llama/análisis
11.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697247

RESUMEN

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Asunto(s)
Clima , Monitoreo del Ambiente , Ésteres , Organofosfatos , Contaminantes del Suelo , Suelo , Tibet , Contaminantes del Suelo/análisis , Suelo/química , Organofosfatos/análisis , Ésteres/análisis , Retardadores de Llama/análisis
12.
Int J Biol Macromol ; 270(Pt 2): 132383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754667

RESUMEN

Halogenated Organic Phosphate Esters (OPEs) are commonly found in plasticizers and flame retardants. However, they are one kind of persistent contaminants that can pose a significant threat to human health and ecosystem as new environmental estrogen. In this study, two representative halogenated OPEs, tris(1,3-dichloro-2-propyl) phosphate (TDCP) and tris(2,3-dibromopropyl) phosphate (TDBP), were selected as experimental subjects to investigate their interaction with human serum albumin (HSA). Despite having similar structures, the two ligands exhibited contrasting effects on enzyme activity of HSA, TDCP inhibiting enzyme activity and TDBP activating it. Furthermore, both TDCP and TDBP could bind to HSA at site I, interacted with Arg222 and other residues, and made the conformation of HSA unfolded. Thermodynamic parameters indicated the main driving forces between TDBP and HSA were hydrogen bonding and van der Waals forces, while TDCP was mainly hydrophobic force. Molecular simulations found that more hydrogen bonds of HSA-TDBP formed during the binding process, and the larger charge area of TDBP than TDCP could partially account for the differences observed in their binding abilities to HSA. Notably, the cytotoxicity of TDBP/TDCP was inversely proportional to their binding ability to HSA, implying a new method for determining the cytotoxicity of halogenated OPEs in vitro.


Asunto(s)
Ésteres , Unión Proteica , Albúmina Sérica Humana , Humanos , Ésteres/química , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Simulación de Dinámica Molecular , Termodinámica , Simulación del Acoplamiento Molecular , Enlace de Hidrógeno , Organofosfatos/química , Organofosfatos/metabolismo , Sitios de Unión , Halogenación
13.
Chemosphere ; 360: 142406, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782132

RESUMEN

Organophosphate esters (OPEs) are extensively used as additives in various products, including electronic equipment, which becomes e-waste when obsolete. Nevertheless, no study has evaluated OPEs exposure levels and the related health risks among e-waste workers in Hong Kong. Therefore, 201 first-spot morning urine samples were collected from 101 e-waste workers and 100 office workers to compare eight urinary OPE metabolites (mOPEs) levels in these groups. The concentrations of six mOPEs were similar in e-waste workers and office workers, except for significantly higher levels of diphenyl phosphate (DPHP) in e-waste workers and bis(1-chloro-2propyl) phosphate (BCIPP) in office workers. Spearman correlation analysis showed that most non-chlorinated mOPEs were correlated with each other in e-waste workers (i.e., nine out of ten pairs, including di-p-cresyl phosphate (DpCP) and di-o-cresyl phosphate (DoCP), DpCP and bis(2-butoxyethyl) phosphate (BBOEP), DpCP and DPHP, DpCP and dibutyl phosphate (DBP), DoCP and BBOEP, DoCP and DPHP, DoCP and DBP, BBOEP and DPHP, DPHP and DBP), indicating that handling e-waste could be the exposure source of specific OPEs. The median values of estimated daily intake (EDI) and hazard quotient (HQ) suggested that the health risks from OPEs exposures were under the recommended thresholds. However, linear regression models, Quantile g-computation, and Bayesian kernel machine regression found that urinary mOPEs elevated 8-hydroxy-2-deoxyguanosine (8-OhdG) levels individually or as a mixture, in which DPHP contributed prominently. In conclusion, although e-waste might not elevate the internal OPEs levels among the participating Hong Kong e-waste workers, attention should be paid to the potential DNA damage stimulated by OPEs under the currently recommended thresholds.


Asunto(s)
Daño del ADN , Residuos Electrónicos , Exposición Profesional , Organofosfatos , Humanos , Hong Kong , Organofosfatos/orina , Organofosfatos/análisis , Medición de Riesgo , Exposición Profesional/análisis , Adulto , Masculino , Persona de Mediana Edad , Ésteres/análisis , Femenino , Adulto Joven
14.
J Hazard Mater ; 473: 134632, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38781852

RESUMEN

Recent increases in organophosphate ester (OPE) application have led to their widespread presence, yet little is known about their temporal trends in food. This study collected milk samples from 13 countries across three continents during 2020-2023, finding detectable OPEs in all samples (range: 2.25-19.7; median: 7.06 ng/g ww). Although no statistical temporal differences were found for the total OPEs during the 4-year sampling campaign, it was interesting to observe significant variations in the decreasing trend for Cl-OPEs and concentration variations for aryl-OPEs and alkyl-OPEs (p < 0.05), indicating changing OPE use patterns. Packaged milk exhibited significant higher OPE levels than those found in directly collected raw unpackaged milk, and milk with longer shelf-life showed higher OPE levels, revealing packaging material as a contamination source. No significant geographical differences were observed in milk across countries (p > 0.05), but Shandong Province, a major OPE production site in China, showed relatively higher OPE concentrations. The Monte Carlo simulation of estimated daily intakes indicated no exposure risk from OPEs through milk consumption. The molecular docking method was used to assess human hormone binding affinity with OPEs, amongst which aryl-OPEs had the highest binding energies. The Toxicological-Priority-Index method which integrated chemical property, detection frequency, risk quotients, hazardous quotients and endocrine-disrupting effects was employed to prioritize OPEs. Aryl-OPEs showed the highest scores, deserving attention in the future.


Asunto(s)
Contaminación de Alimentos , Leche , Leche/química , Animales , Humanos , Contaminación de Alimentos/análisis , Ésteres/análisis , Organofosfatos/análisis , Simulación del Acoplamiento Molecular
15.
Environ Sci Pollut Res Int ; 31(24): 35206-35218, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720129

RESUMEN

As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ7OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ7OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m<1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.


Asunto(s)
Monitoreo del Ambiente , Ésteres , Organofosfatos , China , Medición de Riesgo , Organofosfatos/análisis , Ésteres/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580121

RESUMEN

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Asunto(s)
Antozoos , Monitoreo del Ambiente , Ésteres , Organofosfatos , Contaminantes Químicos del Agua , Animales , China , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Organofosfatos/análisis , Organofosfatos/metabolismo , Ésteres/análisis , Bioacumulación , Agua de Mar/química , Arrecifes de Coral
17.
Environ Res ; 252(Pt 2): 118955, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640988

RESUMEN

Organophosphate esters (OPEs) are a class of chemicals now widely used as flame retardants and plasticizers after the phase-out of polybrominated diphenyl ethers (PBDEs). However, OPEs carry their own risk of developmental toxicity, which poses concern for recent birth cohorts as they have become ubiquitous in the environment. In this review, we summarize the literature evaluating the association between OPE exposure and maternal, perinatal, and child health outcomes. We included original articles investigating associations of OPE exposure with any health outcome on pregnant women, newborns, children, and adolescents. We found 48 articles on this topic. Of these, five addressed maternal health and pregnancy outcomes, 24 evaluated prenatal OPE exposure and child health, 18 evaluated childhood OPE exposure and child/adolescent health, and one article evaluated both prenatal and childhood OPE exposure. These studies suggest that OPE exposure is possibly associated with a wide range of adverse health outcomes, including pregnancy loss, altered gestational duration and smaller birthweight, maternal and neonatal thyroid dysfunction, child metabolic dysregulation and abnormal growth, impaired neurodevelopment, and changes in immune response. Many of the reported outcomes associated with OPE exposure varied by child sex. Findings also varied substantially by OPE metabolite and exposure time. The OPEs most frequently measured, detected, and found to be associated with health outcomes were triphenyl phosphate (TPHP, metabolized to DPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP, metabolized to BDCIPP). The extensive range of health outcomes associated with OPEs raises concern about their growing use in consumer products; however, these findings should be interpreted considering the limitations of these epidemiological studies, such as possible exposure misclassification, lack of generalizability, insufficient adjustment for covariates, and failure to consider chemical exposures as a mixture.


Asunto(s)
Ésteres , Organofosfatos , Humanos , Femenino , Embarazo , Organofosfatos/toxicidad , Niño , Salud Infantil , Retardadores de Llama/toxicidad , Exposición Materna/efectos adversos , Adolescente , Recién Nacido , Contaminantes Ambientales/toxicidad , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Salud Materna , Exposición a Riesgos Ambientales/efectos adversos , Preescolar
18.
Foods ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38472757

RESUMEN

In recent years, due to modern techniques for the distribution, transport, and retail sale of food, the production of large amounts of non-biodegradable and bioaccumulative packaging waste has become a major environmental issue. To address this issue, new food packaging materials based on renewable biomass have been studied as eco-friendly, biodegradable, and biocompatible alternatives to synthetic materials. However, although these materials are not petrochemical derivatives, the presence of contaminants cannot be excluded. This work aims to extend the knowledge on bio-based packaging materials, researching the presence of contaminants potentially able to migrate to food at concentrations of concern. In this study, we focus on two classes of contaminants, organophosphate esters (OPEs) and perfluoroalkyl substances (PFASs), carrying out migration tests toward different simulants, according to the current European regulation. PFAS analysis was performed using high-resolution liquid chromatography coupled to ion trap-tandem mass spectrometry (QTrap). OPE analyses were performed both by gas chromatography-mass spectrometry (GC-MS) and high-resolution liquid chromatography coupled to triple quadrupole mass spectrometry (TQMS). Preliminary findings demonstrate the release of toxic OPEs and PFASs from bio-based food packaging, highlighting the need to investigate the presence of potentially harmful chemicals in these materials.

19.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462084

RESUMEN

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Asunto(s)
Monitoreo del Ambiente , Organofosfatos , Ríos , Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Organofosfatos/análisis , Ríos/química , Ésteres/análisis , China , Espectrometría de Masas en Tándem , Retardadores de Llama/análisis , Ciudades
20.
J Hazard Mater ; 466: 133650, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309170

RESUMEN

Organophosphate esters (OPEs) can cause adverse biological effects through binding to integrin αvß3. However, few studies have focused on the binding activity and mechanism of OPEs to integrin αvß3. Herein, a comprehensive investigation of the mechanisms by which OPEs bind to integrin αvß3 and determination of the binding affinity were conducted by in vitro and in silico approaches: competitive binding assay as well as pharmacophore, molecular docking and QSAR modeling. The results showed that all 18 OPEs exhibited binding activities to integrin αvß3; moreover, hydrogen bonds were identified as crucial intermolecular interactions. In addition, essential factors, including the -P = O structure of OPEs, key amino acid residues and suitable cavity volume of integrin αvß3, were identified to contribute to the formation of hydrogen bonds. Moreover, aryl-OPEs exhibited a lower binding activity with integrin αvß3 than halogenated- and alkyl-OPEs. Ultimately, the QSAR model constructed in this study was effectively used to predict the binding affinity of OPEs to integrin αvß3, and the results suggest that some OPEs might pose potential risks in aquatic environments. The results of this study comprehensively elucidated the binding mechanism of OPEs to integrin αvß3, and supported the environmental risk management of these emerging pollutants.


Asunto(s)
Ésteres , Integrina alfaVbeta3 , Farmacóforo , Unión Competitiva , China , Monitoreo del Ambiente , Ésteres/química , Retardadores de Llama , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Simulación del Acoplamiento Molecular , Organofosfatos , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA