Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Patterns (N Y) ; 5(8): 101024, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39233696

RESUMEN

In the rapidly evolving field of bioimaging, the integration and orchestration of findable, accessible, interoperable, and reusable (FAIR) image analysis workflows remains a challenge. We introduce BIOMERO (bioimage analysis in OMERO), a bridge connecting OMERO, a renowned bioimaging data management platform; FAIR workflows; and high-performance computing (HPC) environments. BIOMERO facilitates seamless execution of FAIR workflows, particularly for large datasets from high-content or high-throughput screening. BIOMERO empowers researchers by eliminating the need for specialized knowledge, enabling scalable image processing directly from OMERO. BIOMERO notably supports the sharing and utilization of FAIR workflows between OMERO, Cytomine/BIAFLOWS, and other bioimaging communities. BIOMERO will promote the widespread adoption of FAIR workflows, emphasizing reusability, across the realm of bioimaging research. Its user-friendly interface will empower users, including those without technical expertise, to seamlessly apply these workflows to their datasets, democratizing the utilization of AI by the broader research community.

2.
J Microsc ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39275979

RESUMEN

Modern bioimaging core facilities at research institutions are essential for managing and maintaining high-end instruments, providing training and support for researchers in experimental design, image acquisition and data analysis. An important task for these facilities is the professional management of complex multidimensional bioimaging data, which are often produced in large quantity and very different file formats. This article details the process that led to successfully implementing the OME Remote Objects system (OMERO) for bioimage-specific research data management (RDM) at the Core Facility Cellular Imaging (CFCI) at the Technische Universität Dresden (TU Dresden). Ensuring compliance with the FAIR (findable, accessible, interoperable, reusable) principles, we outline here the challenges that we faced in adapting data handling and storage to a new RDM system. These challenges included the introduction of a standardised group-specific naming convention, metadata curation with tagging and Key-Value pairs, and integration of existing image processing workflows. By sharing our experiences, this article aims to provide insights and recommendations for both individual researchers and educational institutions intending to implement OMERO as a management system for bioimaging data. We showcase how tailored decisions and structured approaches lead to successful outcomes in RDM practices.

3.
J Microsc ; 294(3): 350-371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38752662

RESUMEN

Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.


Asunto(s)
Microscopía , Investigación Biomédica/métodos , Manejo de Datos/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos
4.
Biol Chem ; 404(5): 433-439, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36853922

RESUMEN

While the FAIR (Findable, Accessible, Interoperable, and Re-usable) principles are well accepted in the scientific community, there are still many challenges in implementing them in the day-to-day scientific process. Data management of microscopy images poses special challenges due to the volume, variety, and many proprietary formats. In particular, appropriate metadata collection, a basic requirement for FAIR data, is a real challenge for scientists due to the technical and content-related aspects. Researchers benefit here from interdisciplinary research network with centralized data management. The typically multimodal structure requires generalized data management and the corresponding acquisition of metadata. Here we report on the establishment of an appropriate infrastructure for the research network by a Core Facility and the development and integration of a software tool MDEmic that allows easy and convenient processing of metadata of microscopy images while providing high flexibility in terms of customization of metadata sets. Since it is also in the interest of the core facility to apply standards regarding the scope and serialization formats to realize successful and sustainable data management for bioimaging, we report on our efforts within the community to define standards in metadata, interfaces, and to reduce the barriers of daily data management.


Asunto(s)
Manejo de Datos , Programas Informáticos , Metadatos
5.
F1000Res ; 11: 638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405555

RESUMEN

Background:  Knowing the needs of the bioimaging community with respect to research data management (RDM) is essential for identifying measures that enable adoption of the FAIR (findable, accessible, interoperable, reusable) principles for microscopy and bioimage analysis data across disciplines. As an initiative within Germany's National Research Data Infrastructure, we conducted this community survey in summer 2021 to assess the state of the art of bioimaging RDM and the community needs. Methods: An online survey was conducted with a mixed question-type design. We created a questionnaire tailored to relevant topics of the bioimaging community, including specific questions on bioimaging methods and bioimage analysis, as well as more general questions on RDM principles and tools. 203 survey entries were included in the analysis covering the perspectives from various life and biomedical science disciplines and from participants at different career levels. Results: The results highlight the importance and value of bioimaging RDM and data sharing. However, the practical implementation of FAIR practices is impeded by technical hurdles, lack of knowledge, and insecurity about the legal aspects of data sharing. The survey participants request metadata guidelines and annotation tools and endorse the usage of image data management platforms. At present, OMERO (Open Microscopy Environment Remote Objects) is the best known and most widely used platform. Most respondents rely on image processing and analysis, which they regard as the most time-consuming step of the bioimage data workflow. While knowledge about and implementation of electronic lab notebooks and data management plans is limited, respondents acknowledge their potential value for data handling and publication. Conclusion: The bioimaging community acknowledges and endorses the value of RDM and data sharing. Still, there is a need for information, guidance, and standardization to foster the adoption of FAIR data handling. This survey may help inspiring targeted measures to close this gap.


Asunto(s)
Manejo de Datos , Metadatos , Humanos , Difusión de la Información , Encuestas y Cuestionarios , Flujo de Trabajo
6.
F1000Res ; 11: 392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685190

RESUMEN

The Open Microscopy Environment Remote Objects (OMERO) is an open-source image manager used by many biologists to store, organize, view, and share microscopy images, while the open-source software ImageJ/Fiji is a very popular program used to analyse them. However, there is a lack of an easy-to-use generic tool to run a workflow on a batch of images without having to download them to local computers, and to automatically organize the results in OMERO. To offer this functionality, we have built (i) a library in Java: "Simple OMERO Client", to communicate with an OMERO database from Java software, (ii) an ImageJ/Fiji plugin to run a macro-program on a batch of images from OMERO and (iii) a new set of Macro Functions, "OMERO Macro extensions", dedicated to interact with OMERO in macro-programming. The latter is intended for developers, with additional possibilities using tag criteria, while the "Batch OMERO plugin" is more geared towards non-IT scientists and has a very easy to use interface. Each tool is illustrated with a use case.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía , Flujo de Trabajo
7.
Wellcome Open Res ; 5: 96, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766455

RESUMEN

Tools and software that automate repetitive tasks, such as metadata extraction and deposition to data repositories, are essential for researchers to share Open Data, routinely. For research that generates microscopy image data, OMERO is an ideal platform for storage, annotation and publication according to open research principles. We present PyOmeroUpload, a Python toolkit for automatically extracting metadata from experiment logs and text files, processing images and uploading these payloads to OMERO servers to create fully annotated, multidimensional datasets. The toolkit comes packaged in portable, platform-independent Docker images that enable users to deploy and run the utilities easily, regardless of Operating System constraints. A selection of use cases is provided, illustrating the primary capabilities and flexibility offered with the toolkit, along with a discussion of limitations and potential future extensions. PyOmeroUpload is available from: https://github.com/SynthSys/pyOmeroUpload.

8.
F1000Res ; 9: 1278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34567536

RESUMEN

Modern microscopy is based on reproducible quantitative analysis, image data should be batch-processed by a standardized system that can be shared and easily reused by others. Furthermore, such system should require none or minimal programming from the users. We developed TAPAS (Towards an Automated Processing and Analysis System). The goal is to design an easy system for describing and exchanging processing workflows. The protocols are simple text files comprising a linear list of commands used to process and analyse the images. An extensive set of 60 modules is already available, mostly based on the tools proposed in the 3D ImageJ Suite. We propose a wizard, called TAPAS menu, to help the user design the protocol by listing the available modules and the parameters associated. Most modules will have default parameters values for most common tasks. Once the user has designed the protocol, he/she can apply the protocol to a set of images, that can be either stored locally or on a OMERO database. An extensive documentation including the list of modules, various tutorials and link to the source code is available at https://imagej.net/TAPAS.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Flujo de Trabajo
9.
Biomed Khim ; 64(1): 10-15, 2018 Jan.
Artículo en Ruso | MEDLINE | ID: mdl-29460829

RESUMEN

OMERO service was used to annotate the cell line HaCaT microscope images by two independent expert groups. The images were obtained in the course of developing tissue-engineered epithelium which consisted of several layers of the keratinocytes. Evaluation of expert opinions was performed by calculation of specificity, sensitivity and accuracy. The best convergence of opinions (91%) was achieved for the confluence of the cell monolayers. Accuracy 70% was observed in determining the extent of cell differentiation after 10 days of incubation. The paper illustrates the usefulness of OMERO service for dynamic cross-validation of quality in the development and standardization of cell preparations.


Asunto(s)
Piel , Diferenciación Celular , Queratinocitos , Control de Calidad , Ingeniería de Tejidos
10.
Plant Signal Behav ; 12(4): e1311437, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28375043

RESUMEN

Recent advances in replicative DNA labeling technology have allowed new ways to study DNA replication in living plants. Temporal and spatial aspects of DNA replication programs are believed to derive from genomic structure and function. Bass et al. (2015) recently visualized DNA synthesis using 3D microscopy of nuclei at three sub-stages of S phase: early, middle and late. This addendum expands on that study by comparing plant and animal DNA replication patterns, by considering implications of the two-compartment model of euchromatin, and by exploring the meaning of the DNA labeling signals inside the nucleolus. Finally, we invite the public to explore and utilize 300 image data sets through OMERO, a teaching and research web resource for visualization, management, or analysis of microscopic data.


Asunto(s)
ADN de Plantas/fisiología , Cromatina/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Plantas/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
J Struct Biol ; 184(2): 173-81, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24113529

RESUMEN

The Protein Data Bank in Europe (PDBe) has developed web-based tools for the visualisation and analysis of 3D electron microscopy (3DEM) structures in the Electron Microscopy Data Bank (EMDB) and Protein Data Bank (PDB). The tools include: (1) a volume viewer for 3D visualisation of maps, tomograms and models, (2) a slice viewer for inspecting 2D slices of tomographic reconstructions, and (3) visual analysis pages to facilitate analysis and validation of maps, tomograms and models. These tools were designed to help non-experts and experts alike to get some insight into the content and assess the quality of 3DEM structures in EMDB and PDB without the need to install specialised software or to download large amounts of data from these archives. The technical challenges encountered in developing these tools, as well as the more general considerations when making archived data available to the user community through a web interface, are discussed.


Asunto(s)
Bases de Datos de Proteínas , Programas Informáticos , Tomografía con Microscopio Electrónico , Imagenología Tridimensional , Internet , Modelos Moleculares , Estructura Cuaternaria de Proteína , Proteínas/química , Proteínas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA