Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19716, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181951

RESUMEN

Pelargoniums cultivated for ornamental purposes rely on efficient vegetative propagation. This study researched applicability of chlorophyll fluorescence for validating the physiological conditions of pelargonium cuttings. Results indicated a correlation between the chlorophyll fluorescence and rooting potential. The ET0/RC values were negatively correlated with the rooting efficiency between the varieties and the duration of cold storage. A negative correlation was observed between OJIP parameters, representing energy flow in thylakoids, and chlorophyll content in cuttings with lower nutritional status. The phenomenological energy fluxes for leaf cross-sections and the number of active PSII reaction centers in the not-excited state (RC/CS0) increase with raised chlorophyll concentration. This imply the influence of rooting ability on the demand for photoassimilates in pelargonium cuttings, which can be detected early on through chlorophyll fluorescence analysis but not chlorophyll content measurements. Chlorophyll fluorescence evaluation, along with specific OJIP test parameters such as the performance indices PIABS and PItotal, prove useful for predicting rooting efficiency in relation to the nutritional status of cuttings, suggesting the effects of cuttings cold storage and discerning varietal differences in rooting. This study establishes the pragmatic application of chlorophyll fluorescence assessment for elucidating the physiological intricacies of pelargonium cuttings and factors influencing rooting efficiency.


Asunto(s)
Clorofila , Pelargonium , Fotosíntesis , Pelargonium/metabolismo , Clorofila/metabolismo , Fluorescencia , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Complejo de Proteína del Fotosistema II/metabolismo
2.
Heliyon ; 10(14): e34603, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114073

RESUMEN

Currently, heterosis is an effective method for achieving high crop quality and yield worldwide. Owing to the challenges of breeding and the high cost of the F1 generation, the F2 generation is considered the more desirable hybrid offspring for agricultural production. The use of OJIP fluorescence provides rapid insights into various photosynthetic mechanisms. However, OJIP fluorescence has not been previously studied as an indicator of the rate of heterosis. Consequently, we investigated the relationship between photosynthetic characteristics and growth and developmental parameters in hybrid cotton cultivars. The findings showed a gradual decline in the photosynthetic performance of hybrid cotton as the number of generations increased. In comparison to the F3 generation, both the F1 and F2 generations showed minimal variations in parameters, thus maintaining hybrid dominant and emphasizing the agricultural production potential of the F2 generation. The JIP-test revealed significant differences in the relationship between ψ Eo and ϕ Eo parameters, as well as variations in the connections between the photo-response center and electron transfer efficiency, and between cotton yield and fiber quality in the hybrid progeny. These variations can serve as indicators for predicting the extent of hybrid dominance in cotton. The results indicated significant differences in the light and dark responses of the hybrid offspring. By using parents with similar photosynthetic performance as genetic resources for crossbreeding, the photosynthetic capacity of the hybrid progeny can be enhanced to facilitate the efficient absorption and conversion of light energy in crops.

3.
BMC Plant Biol ; 24(1): 774, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143533

RESUMEN

BACKGROUND: Nitrogen (N) is a crucial element for increasing photosynthesis and crop yields. The study aims to evaluate the photosynthetic regulation and yield formation mechanisms of different nodulating peanut varieties with N fertilizer application. METHOD: The present work explored the effect of N fertilizer application rates (N0, N45, N105, and N165) on the photosynthetic characteristics, chlorophyll fluorescence characteristics, dry matter, N accumulation, and yield of four peanut varieties. RESULTS: The results showed that N application increased the photosynthetic capacity, dry matter, N accumulation, and yield of peanuts. The measurement of chlorophyll a fluorescence revealed that the K-phase, J-phase, and I-phase from the OJIP curve decreased under N105 treatment compared with N0, and WOI, ET0/CSM, RE0/CSM, ET0/RC, RE0/RC, φPo, φEo, φRo, and Ψ0 increased, whereas VJ, VI, WK, ABS/RC, TR0/RC, DI0/RC, and φDo decreased. Meanwhile, the photosystem activity and electron transfer efficiency of nodulating peanut varieties decreased with an increase in N (N165). However, the photosynthetic capacity and yield of the non-nodulating peanut variety, which highly depended on N fertilizer, increased with an increase in N. CONCLUSION: Optimized N application (N105) increased the activity of the photosystem II (PSII) reaction center, improved the electron and energy transfer performance in the photosynthetic electron transport chain, and reduced the energy dissipation of leaves in nodulating peanut varieties, which is conducive to improving the yield. Nevertheless, high N (N165) had a positive effect on the photosystem and yield of non-nodulating peanut. The results provide highly valuable guidance for optimizing peanut N management and cultivation measures.


Asunto(s)
Arachis , Clorofila , Fertilizantes , Nitrógeno , Fotosíntesis , Arachis/metabolismo , Arachis/fisiología , Arachis/crecimiento & desarrollo , Nitrógeno/metabolismo , Clorofila/metabolismo , Fluorescencia , Cinética
4.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955078

RESUMEN

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Asunto(s)
Clorofila , Cloropirifos , Clorofila/metabolismo , Clorofila/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Fluorescencia , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Fotosíntesis/efectos de los fármacos , Dimetoato/toxicidad , Dimetoato/metabolismo , Espectrometría de Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Monitoreo del Ambiente/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
5.
Front Plant Sci ; 15: 1413653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952846

RESUMEN

Reduced glutathione (γ-glutamyl-cysteinyl-glycine, GSH), the primary non-protein sulfhydryl group in organisms, plays a pivotal role in the plant salt stress response. This study aimed to explore the impact of GSH on the photosynthetic apparatus, and carbon assimilation in tomato plants under salt stress, and then investigate the role of nitric oxide (NO) in this process. The investigation involved foliar application of 5 mM GSH, 0.1% (w/v) hemoglobin (Hb, a nitric oxide scavenger), and GSH+Hb on the endogenous NO levels, rapid chlorophyll fluorescence, enzyme activities, and gene expression related to the Calvin cycle in tomato seedlings (Solanum lycopersicum L. cv. 'Zhongshu No. 4') subjected short-term salt stress (100 mM NaCl) for 24, 48 and 72 hours. GSH treatment notably boosted nitrate reductase (NR) and NO synthase (NOS) activities, elevating endogenous NO signaling in salt-stressed tomato seedling leaves. It also mitigated chlorophyll fluorescence (OJIP) curve distortion and damage to the oxygen-evolving complex (OEC) induced by salt stress. Furthermore, GSH improved photosystem II (PSII) electron transfer efficiency, reduced QA - accumulation, and countered salt stress effects on photosystem I (PSI) redox properties, enhancing the light energy absorption index (PIabs). Additionally, GSH enhanced key enzyme activities in the Calvin cycle and upregulated their genes. Exogenous GSH optimized PSII energy utilization via endogenous NO, safeguarded the photosynthetic reaction center, improved photochemical and energy efficiency, and boosted carbon assimilation, ultimately enhancing net photosynthetic efficiency (Pn) in salt-stressed tomato seedling leaves. Conversely, Hb hindered Pn reduction and NO signaling under salt stress and weakened the positive effects of GSH on NO levels, photosynthetic apparatus, and carbon assimilation in tomato plants. Thus, the positive regulation of photosynthesis in tomato seedlings under salt stress by GSH requires the involvement of NO.

6.
Methods Mol Biol ; 2790: 257-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649575

RESUMEN

Chlorophyll fluorescence is a rapid and noninvasive tool used for probing the activity of photosynthesis that can be used in vivo and in the field. It is highly relevant to the demands of high-throughput crop phenotyping and can be automated or manually applied. In this chapter, we describe protocols and advice for making fast timescale fluorescence measurements using handheld equipment in the laboratory or in the field in the context of phenotyping. While interpretation of some measured parameters requires caution for the purpose of identifying underlying mechanisms, we demonstrate this technique is appropriate for some applications where convenience, rapidity, and sensitivity are required.


Asunto(s)
Clorofila , Fotosíntesis , Clorofila/metabolismo , Fluorescencia
7.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339174

RESUMEN

The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Triticum , Carbono , Ecosistema , Suelo
8.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469296

RESUMEN

Abstract Growth of plants is severely reduced due to water stress by affecting photosynthesis including photosystem II (PSII) activity and electron transport. This study emphasised on comparative and priority targeted changes in PSII activity due to progressive drought in seven populations of Panicum antidotale (P. antidotale) collected from Cholistan Desert and non-Cholistan regions. Tillers of equal growth of seven populations of P. antidotale grown in plastic pots filled with soil were subjected progressive drought by withholding water irrigation for three weeks. Progressive drought reduced the soil moisture content, leaf relative water content, photosynthetic pigments and fresh and dry biomass of shoots in all seven populations. Populations from Dingarh Fort, Dingarh Grassland and Haiderwali had higher growth than those of other populations. Cholistani populations especially in Dingarh Grassland and Haiderwali had greater ability of osmotic adjustment as reflected by osmotic potential and greater accumulation of total soluble proteins. Maximum H2O2 under water stress was observed in populations from Muzaffargarh and Khanewal but these were intermediate in MDA content. Under water stress, populations from Muzaffargarh and Dingarh Fort had greater K+ accumulation in their leaves. During progressive drought, non-Cholistani populations showed complete leaf rolling after 23 days of drought, and these populations could not withstand with more water stress condition while Cholistani populations tolerated more water stress condition for 31 days. Moreover, progressive drought caused PSII damages after 19 days and it became severe after 23 days in non-Cholistani populations of P. antidotale than in Cholistani populations.


Resumo O crescimento das plantas é severamente reduzido devido ao estresse hídrico, afetando a fotossíntese, incluindo a atividade do fotossistema II (PSII) e o transporte de elétrons. Este estudo enfatizou as mudanças comparativas e prioritárias na atividade do PSII devido à seca progressiva em sete populações de Panicum antidotale (P. antidotale) coletadas no Deserto do Cholistão e regiões fora do Cholistão. Perfilhos de igual crescimento de sete populações de P. antidotale cultivadas em vasos de plástico cheios de solo foram submetidos à seca progressiva, retendo a irrigação com água por três semanas. A seca progressiva reduziu o teor de umidade do solo, teor de água relativo nas folhas, pigmentos fotossintéticos e biomassa fresca e seca dos brotos em todas as sete populações. Populações de Dingarh Fort, Dingarh Grassland e Haiderwali tiveram maior crescimento do que as de outras populações. As populações de Cholistani, especialmente em Dingarh Grassland e Haiderwali, apresentaram maior capacidade de ajuste osmótico, refletido pelo potencial osmótico e maior acúmulo de proteínas solúveis totais. H2O2 máximo sob estresse hídrico foi observado em populações de Muzaffargarh e Khanewal, mas estas foram intermediárias no conteúdo de MDA. Sob estresse hídrico, as populações de Muzaffargarh e Dingarh Fort tiveram maior acúmulo de K+ em suas folhas. Durante a seca progressiva, as populações não cholistanesas mostraram rolagem completa das folhas após 23 dias de seca, e essas populações não conseguiram suportar mais condições de estresse hídrico, enquanto as populações cholistani toleraram mais condições de estresse hídrico por 31 dias. Além disso, a seca progressiva causou danos ao PSII após 19 dias e tornou-se severa após 23 dias em populações não cholistanesas de P. antidotale do que em populações cholistanesas.

9.
Braz. j. biol ; 84: e252735, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1355873

RESUMEN

Abstract Growth of plants is severely reduced due to water stress by affecting photosynthesis including photosystem II (PSII) activity and electron transport. This study emphasised on comparative and priority targeted changes in PSII activity due to progressive drought in seven populations of Panicum antidotale (P. antidotale) collected from Cholistan Desert and non-Cholistan regions. Tillers of equal growth of seven populations of P. antidotale grown in plastic pots filled with soil were subjected progressive drought by withholding water irrigation for three weeks. Progressive drought reduced the soil moisture content, leaf relative water content, photosynthetic pigments and fresh and dry biomass of shoots in all seven populations. Populations from Dingarh Fort, Dingarh Grassland and Haiderwali had higher growth than those of other populations. Cholistani populations especially in Dingarh Grassland and Haiderwali had greater ability of osmotic adjustment as reflected by osmotic potential and greater accumulation of total soluble proteins. Maximum H2O2 under water stress was observed in populations from Muzaffargarh and Khanewal but these were intermediate in MDA content. Under water stress, populations from Muzaffargarh and Dingarh Fort had greater K+ accumulation in their leaves. During progressive drought, non-Cholistani populations showed complete leaf rolling after 23 days of drought, and these populations could not withstand with more water stress condition while Cholistani populations tolerated more water stress condition for 31 days. Moreover, progressive drought caused PSII damages after 19 days and it became severe after 23 days in non-Cholistani populations of P. antidotale than in Cholistani populations.


Resumo O crescimento das plantas é severamente reduzido devido ao estresse hídrico, afetando a fotossíntese, incluindo a atividade do fotossistema II (PSII) e o transporte de elétrons. Este estudo enfatizou as mudanças comparativas e prioritárias na atividade do PSII devido à seca progressiva em sete populações de Panicum antidotale (P. antidotale) coletadas no Deserto do Cholistão e regiões fora do Cholistão. Perfilhos de igual crescimento de sete populações de P. antidotale cultivadas em vasos de plástico cheios de solo foram submetidos à seca progressiva, retendo a irrigação com água por três semanas. A seca progressiva reduziu o teor de umidade do solo, teor de água relativo nas folhas, pigmentos fotossintéticos e biomassa fresca e seca dos brotos em todas as sete populações. Populações de Dingarh Fort, Dingarh Grassland e Haiderwali tiveram maior crescimento do que as de outras populações. As populações de Cholistani, especialmente em Dingarh Grassland e Haiderwali, apresentaram maior capacidade de ajuste osmótico, refletido pelo potencial osmótico e maior acúmulo de proteínas solúveis totais. H2O2 máximo sob estresse hídrico foi observado em populações de Muzaffargarh e Khanewal, mas estas foram intermediárias no conteúdo de MDA. Sob estresse hídrico, as populações de Muzaffargarh e Dingarh Fort tiveram maior acúmulo de K+ em suas folhas. Durante a seca progressiva, as populações não cholistanesas mostraram rolagem completa das folhas após 23 dias de seca, e essas populações não conseguiram suportar mais condições de estresse hídrico, enquanto as populações cholistani toleraram mais condições de estresse hídrico por 31 dias. Além disso, a seca progressiva causou danos ao PSII após 19 dias e tornou-se severa após 23 dias em populações não cholistanesas de P. antidotale do que em populações cholistanesas.


Asunto(s)
Panicum , Fotosíntesis , Hojas de la Planta , Desecación , Sequías , Peróxido de Hidrógeno
10.
Plant Sci ; 336: 111864, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689279

RESUMEN

To understand the role of Zn and Cd in anti-viral defence, Zn/Cd hyperaccumulator Noccaea caerulescens plants grown with deficient (0.3 µM), replete (10 µM) and excess (100 µM) Zn2+ and Cd (10 µM Zn2+ + 1 µM Cd2+) were infected with Turnip yellow mosaic virus (TYMV). Gas exchange and chlorophyll fluorescence kinetics analyses demonstrated direct TYMV effects on photosynthetic light reactions but N. caerulescens was more resistant against TYMV than the previously studied non-hyperaccumulator N. ochroleucum. Virus abundance and photosynthesis inhibition were the lowest in the high Zn and Cd treatments. RNAseq analysis of 10 µM Zn2+ plants revealed TYMV-induced upregulation of Ca transporters, chloroplastic ZTP29 and defence genes, but none of those that are known to be strongly involved in hyperaccumulation. Synchrotron µ-XRF tomography, however, showed that Zn hyperaccumulation remained strongest in vacuoles of epidermal storage cells regardless of infection. This was in contrast to N. ochroleucum, where apoplastic Zn drastically increased in response to TYMV. These results suggest that the antiviral response of N. caerulescens is less induced by the onset of this biotic stress, but it is rather a permanent resistant state of the plant. Real-time qPCR revealed upregulation of ferritin in Zn10 infected plants, suggesting Fe deprivation as a virus defence strategy under suboptimal Zn supply.


Asunto(s)
Brassicaceae , Tymovirus , Cadmio , Zinc/farmacología , Brassicaceae/genética
11.
Plant Physiol Biochem ; 201: 107893, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37459804

RESUMEN

High light (HL) is a common environmental stress directly imposes photoinhibition on the photosynthesis apparatus. Breeding plants for tolerance against HL is therefore highly demanded. Chlorophyll fluorescence (ChlF) is a sensitive indicator of stress in plants and can be evaluated using OJIP transients. In this study, we compared the ChlF features of plants exposed to HL (1200 µmol m-2 s-1) with that of control plants (300 µmol m-2 s-1). To extract the most reliable ChlF features for discrimination between HL-stressed and non-stressed plants, we applied three artificial neural network (ANN)-based algorithms, namely, Boruta, Support Vector Machine (SVM), and Recursive Feature Elimination (RFE). Feature selection algorithms identified multiple features but only two features, namely the maximal quantum yield of PSII photochemistry (FV/FM) and quantum yield of energy dissipation (ɸD0), remained consistent across all genotypes in control conditions, while exhibited variation in HL. Therefore, considered reliable features for HL stress screening. The selected features were then used for screening 14 tomato genotypes for HL. Genotypes were categorized into three groups, tolerant, semi-tolerant, and sensitive genotypes. Foliar hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were measured as independent proxies for benchmarking selected features. Tolerant genotypes were attributed with the lowest change in H2O2 and MDA contents, while the sensitive genotypes displayed the highest magnitude of increase in H2O2 and MDA by HL treatment compared to the control. Finally, a FV/FM higher than 0.77 and ɸD0 lower than 0.24 indicates a healthy electron transfer chain (ETC) when tomato plants are exposed to HL.


Asunto(s)
Clorofila , Solanum lycopersicum , Clorofila/química , Solanum lycopersicum/genética , Fluorescencia , Peróxido de Hidrógeno , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Fitomejoramiento , Fotosíntesis/genética , Genotipo , Algoritmos , Redes Neurales de la Computación , Luz
12.
Biomolecules ; 13(7)2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37509094

RESUMEN

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.


Asunto(s)
Diurona , Herbicidas , Diurona/metabolismo , Diurona/farmacología , Clorofila/metabolismo , Cobre/farmacología , Spinacia oleracea , Complejo de Proteína del Fotosistema II/metabolismo , Fotoquímica , Fluorescencia , Herbicidas/farmacología
13.
Front Plant Sci ; 14: 1139162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332698

RESUMEN

Exogenously applied brassinosteroids (BRs) improve plant response to drought. However, many important aspects of this process, such as the potential differences caused by different developmental stages of analyzed organs at the beginning of drought, or by BR application before or during drought, remain still unexplored. The same applies for the response of different endogenous BRs belonging to the C27, C28-and C29- structural groups to drought and/or exogenous BRs. This study examines the physiological response of two different leaves (younger and older) of maize plants exposed to drought and treated with 24-epibrassinolide (epiBL), together with the contents of several C27, C28-and C29-BRs. Two timepoints of epiBL application (prior to and during drought) were utilized to ascertain how this could affect plant drought response and the contents of endogenous BRs. Marked differences in the contents of individual BRs between younger and older maize leaves were found: the younger leaves diverted their BR biosynthesis from C28-BRs to C29-BRs, probably at the very early biosynthetic steps, as the levels of C28-BR precursors were very low in these leaves, whereas C29-BR levels vere extremely high. Drought also apparently negatively affected contents of C28-BRs (particularly in the older leaves) and C29-BRs (particularly in the younger leaves) but not C27-BRs. The response of these two types of leaves to the combination of drought exposure and the application of exogenous epiBL differed in some aspects. The older leaves showed accelerated senescence under such conditions reflected in their reduced chlorophyll content and diminished efficiency of the primary photosynthetic processes. In contrast, the younger leaves of well-watered plants showed at first a reduction of proline levels in response to epiBL treatment, whereas in drought-stressed, epiBL pre-treated plants they were subsequently characterized by elevated amounts of proline. The contents of C29- and C27-BRs in plants treated with exogenous epiBL depended on the length of time between this treatment and the BR analysis regardless of plant water supply; they were more pronounced in plants subjected to the later epiBL treatment. The application of epiBL before or during drought did not result in any differences of plant response to this stressor.

14.
BMC Plant Biol ; 23(1): 329, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340375

RESUMEN

BACKGROUND: Most nanoparticles (NPs) have a significant impact on the structure and function of the plant photosynthetic apparatus. However, their spectrum of action varies significantly, from beneficial stimulation to toxicity, depending on the type of NPs, the concentration used and plant genotypic diversity. Photosynthetic performance can be assessed through chlorophyll a fluorescence (ChlF) measurements. These data allow to indirectly obtain detailed information about primary light reactions, thylakoid electron transport reactions, dark enzymatic stroma reactions, slow regulatory processes, processes at the pigment level. It makes possible, together with leaf reflectance performance, to evaluate photosynthesis sensitivity to stress stimuli. RESULTS: We investigated effects of different metal and metal(oid) oxide nanoparticles on photosynthesis of oakleaf lettuce seedlings by monitoring the chlorophyll a fluorescence light radiation and reflectance from the leaves. Observations of ChlF parameters and changes in leaf morphology were carried out for 9 days in two-day intervals. Spectrophotometric studies were performed at 9th day. Suspensions of NPs with the following concentrations were used: 6% TiO2, SiO2; 3% CeO2, SnO2, Fe2O3; 0.004% (40 ppm) Ag; 0.002% (20 ppm) Au. Nanoparticles were applied directly on the leaves which caused small symptoms of chlorosis, necrosis and leaf veins deformation, but the plants fully recovered to the initial morphological state at 9th day. Leaf reflectance analysis showed an increase in FRI for SiO2-NPs and CeO2-NPs treatments and ARI2 for Fe2O3, however, WBI and PRI coefficients for the latter nanoparticle were lower than in control. Chlorophyll a fluorescence parameters have changed due to NPs treatment. Fe2O3-NPs caused an increase in Fv/F0, PIABS, ET0/RC, DI0/RC, ABS/RC in different time points in comparison to control, also Ag, Au and SnO2 treatment caused an increase in Fv/F0, PIABS or ET0/RC, respectively. On the other hand, TiO2-NPs caused a decrease in Fv/Fm and Fv/F0 parameters, but an increase in DI0/RC value was observed. SnO2-NPs decreased PIABS, but increased ET0/RC than compared to control. Nanoparticles affected the shape of the O-J-I-P curve in slight manner, however, further analyses showed unfavourable changes within the PSII antenna, manifested by a slowdown in the transport of electrons between the Chl molecules of the light-harvesting complex II and the active center of PSII due to NPs application. CONCLUSION: Changes in ChlF parameters and leaf reflectance values clearly proved the significant influence of NPs on the functioning of the photosynthetic apparatus, especially right after NPs application. The nature of these changes was strictly depended on the type of nanoparticles and sometimes underwent very significant changes over time. The greatest changes in ChlF parameters were caused by Fe2O3 nanoparticles, followed by TiO2-NPs. After slight response of O-J-I-P curves to treatment of the plants with NPs the course of the light phase of photosynthesis stabilized and at 9th day were comparable to the control curve.


Asunto(s)
Clorofila , Nanopartículas , Clorofila A , Lactuca , Óxidos/farmacología , Fluorescencia , Dióxido de Silicio/farmacología , Complejo de Proteína del Fotosistema II , Hojas de la Planta/fisiología
15.
Toxins (Basel) ; 15(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37104172

RESUMEN

Phytotoxic macrolides attract attention as prototypes of new herbicides. However, their mechanisms of action (MOA) on plants have not yet been elucidated. This study addresses the effects of two ten-membered lactones, stagonolide A (STA) and herbarumin I (HBI) produced by the fungus Stagonospora cirsii, on Cirsium arvense, Arabidopsis thaliana and Allium cepa. Bioassay of STA and HBI on punctured leaf discs of C. arvense and A. thaliana was conducted at a concentration of 2 mg/mL to evaluate phenotypic responses, the content of pigments, electrolyte leakage from leaf discs, the level of reactive oxygen species, Hill reaction rate, and the relative rise in chlorophyll a fluorescence. The toxin treatments resulted in necrotic and bleached leaf lesions in the dark and in the light, respectively. In the light, HBI treatment caused the drop of carotenoids content in leaves on both plants. The electrolyte leakage caused by HBI was light-dependent, in contrast with that caused by STA. Both compounds induced light-independent peroxide generation in leaf cells but did not affect photosynthesis 6 h after treatment. STA (10 µg/mL) caused strong disorders in root cells of A. thaliana leading to the complete dissipation of the mitochondrial membrane potential one hour post treatment, as well as DNA fragmentation and disappearance of acidic vesicles in the division zone after 8 h; the effects of HBI (50 µg/mL) were much milder. Furthermore, STA was found to inhibit mitosis but did not affect the cytoskeleton in cells of root tips of A. cepa and C. arvense, respectively. Finally, STA was supposed to inhibit the intracellular vesicular traffic from the endoplasmic reticulum to the Golgi apparatus, thus interfering with mitosis. HBI is likely to have another main MOA, probably inhibiting the biosynthesis of carotenoids.


Asunto(s)
Arabidopsis , Ascomicetos , Toxinas Biológicas , Clorofila A , Lactonas/química , Fotosíntesis , Toxinas Biológicas/farmacología , Hojas de la Planta , Carotenoides/farmacología , Electrólitos , Clorofila
16.
Antioxidants (Basel) ; 12(2)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36830024

RESUMEN

Phosphorus (P) is an essential macronutrient, and an important component of plant metabolism. However, little is known about the effects of low P availability on P absorption, the photosynthetic electron transport chain, and the antioxidant system in cotton. This study used cotton genotypes (sensitive FJA and DLNTDH and tolerant BX014 and LuYuan343) with contrasting low-P tolerance in a hydroponic experiment under 15 µM, 50 µM, and 500 µM P concentrations. The results showed that low P availability reduced plant development and leaf area, shoot length, and dry weight in FJA and DLNADH, compared to BX014 and LuYuan343. The low P availability decreased the gas-exchange parameters such as the net photosynthetic rate, transpiration rate, and stomatal conductance, and increased the intercellular CO2 concentration. Chlorophyll a fluorescence demonstrated that the leaves' absorption and trapped-energy flux were largely steady. In contrast, considerable gains in absorption and trapped-energy flux per reaction center resulted from decreases in the electron transport per reaction center under low-P conditions. In addition, low P availability reduced the activities of antioxidant enzymes and increased the content of malondialdehyde in the cotton genotypes, especially in FJA and DLNTDH. Moreover, low P availability reduced the activity of PEPC and generated a decline in the content of ATP and NADPH. Our research can provide a theoretical physiological basis for the growth and tolerance of cotton under low-P conditions.

17.
Plants (Basel) ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36771518

RESUMEN

Salinization of cultivated soils is a global phenomenon mainly caused by agricultural practices and deteriorates plant production. Biostimulants are products which can be applied exogenously to enhance the plants' defense mechanism and improve their developmental characteristics, also under abiotic stresses. We studied the potential of two biostimulants, Ascophyllum nodosum (Asc) seaweed and a silicon-based (Si), to alleviate the saline conditions endured by watermelon transplants. Three salinity (0 mM, 50 mM, and 100 mM NaCl) treatments were applied in watermelon seedlings transplanted in pots, while the two biostimulants were sprayed in the foliar in the beginning of the experiment. Relative water content was improved by Asc in the high salinity level. The plant area, leaf number, and shoot dry weight deteriorated in relation to the salinity level. However, the root system (total root length and surface area) was enhanced by 50 mM salt, as well as Asc in some cases. The OJIP transient of the photosynthetic apparatus was also evaluated. Some OJIP parameters diminished in the high salinity level after Asc application. It is concluded that after salt stress Asc provoked a positive phenotypic response, while Si did not alleviate the salinity stress of transplanted watermelon.

18.
Environ Sci Pollut Res Int ; 30(5): 12125-12137, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36107294

RESUMEN

Although the addition of triclosan (TCS) in consumer products has been strictly restricted, its continuous applications in hospitals and other medical facilities and its numerous residues still pose a potential risk to aquatic organisms and aquatic ecosystems. In this study, we investigated the growth, biochemical alterations, and physiological responses of Chlorella vulgaris exposed to different concentrations of TCS. The potential toxicity mechanisms associated with excessive production of reactive oxygen species (ROS) and disruption of photosynthetic system II (PSII) were also analyzed. The results indicated that the growth, cellular ultrastructure, and physiology of C. vulgaris were severely affected by TCS in a dose-effect dependent manner. TCS inhibited the growth of C. vulgaris, leading to mitochondria enlargement, the disordering of the arrangement of thylakoids, cell wall rupture, organelles loss, and the cytoplasm lysis. TCS induced severe oxidative damage characterized by ROS accumulation, elevated malondialdehyde (MDA), and up-regulation of antioxidant enzyme activities. Moreover, in TCS-induced algal cells, the main sites of ROS accumulation were chloroplasts, mitochondria, and cell membranes, with ROS accumulating most in the mitochondria. In addition, TCS caused damage to the reaction center (RC inactivation), donor side (OEC damage), and accepted side (electron transport from QA to QB) of PSII in C. vulgaris, leading to inhibition of photosynthetic activity. These results could provide novel insights into the mechanisms of TCS-induced ROS accumulation and photosynthetic inhibition in C. vulgaris, which would contribute to a deep understanding of TCS toxicity on algae.


Asunto(s)
Chlorella vulgaris , Triclosán , Chlorella vulgaris/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triclosán/toxicidad , Triclosán/metabolismo , Ecosistema , Fotosíntesis , Estrés Oxidativo , Antioxidantes/metabolismo
19.
Front Plant Sci ; 13: 981581, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507447

RESUMEN

Introduction: Crassulacean acid metabolism (CAM) is one of the three main metabolic adaptations for CO2 fixation found in plants. A striking feature for these plants is nocturnal carbon fixation and diurnal decarboxylation of malic acid to feed Rubisco with CO2 behind closed stomata, thereby saving considerable amounts of water. Compared to the effects of high temperatures, drought, and light, much less information is available about the effects of chilling temperatures on CAM plants. In addition a lot of CAM ornamentals are grown in heated greenhouses, urging for a deeper understanding about the physiological responses to chilling in order to increase sustainability in the horticultural sector. Methods: The present study focuses on the impact of chilling temperatures (10°C) for 3 weeks on the photosynthetic performance of the obligate CAM orchid Phalaenopsis 'Edessa'. Detailed assessments of the light reactions were performed by analyzing chlorophyll a fluorescence induction (OJIP) parameters and the carbon fixation reactions by measuring diel leaf gas exchange and diel metabolite patterns. Results and Discussion: Results showed that chilling already affected the light reactions after 24h. Whilst the potential efficiency of photosystem II (PSII) (Fv/Fm) was not yet influenced, a massive decrease in the performance index (PIabs) was noticed. This decrease did not depict an overall downregulation of PSII related energy fluxes since energy absorption and dissipation remained uninfluenced whilst the trapped energy and reduction flux were upregulated. This might point to the presence of short-term adaptation mechanisms to chilling stress. However, in the longer term the electron transport chain from PSII to PSI was affected, impacting both ATP and NADPH provision. To avoid over-excitation and photodamage plants showed a massive increase in thermal dissipation. These considerations are also in line with carbon fixation data showing initial signs of cold adaptation by achieving comparable Rubisco activity compared to unstressed plants but increasing daytime stomatal opening in order to capture a higher proportion of CO2 during daytime. However, in accordance with the light reactions data, Rubisco activity declined and stomatal conductance and CO2 uptake diminished to near zero levels after 3 weeks, indicating that plants were not successful in cold acclimation on the longer term.

20.
Plants (Basel) ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501376

RESUMEN

Chrysanthemum (Chrysanthemum morifolium) is among the most popular ornamental plants, propagated mainly through stem cuttings. There is a lack of information regarding the impact of the lighting environment on the successful production of cuttings and underlying mechanisms. The light spectrum affects plant morphology, growth, and photosynthesis. In the present study, chrysanthemum, cv. 'Katinka' cuttings, were exposed to five lighting spectra, including monochromatic red (R), blue (B) lights, and multichromatic lights, including a combination of R and B (R:B), a combination of R, B, and far red (R:B:FR) and white (W), for 30 days. B light enhanced areal growth, as indicated by a higher shoot mass ratio, while R light directed the biomass towards the underground parts of the cuttings. Monochromatic R and B lights promoted the emergence of new leaves. In contrast, individual leaf area was largest under multichromatic lights. Exposing the cuttings to R light led to the accumulation of carbohydrates in the leaves. Cuttings exposed to multichromatic lights showed higher chlorophyll content than monochromatic R- and B-exposed cuttings. Conversely, carotenoid and anthocyanin contents were the highest in monochromatic R- and B-exposed plants. B-exposed cuttings showed higher photosynthetic performance, exhibited by the highest performance index on the basis of light absorption, and maximal quantum yield of PSII efficiency. Although R light increased biomass toward roots, B light improved above-ground growth, photosynthetic functionality, and the visual performance of Chrysanthemum cuttings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA