Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Sci Rep ; 14(1): 17334, 2024 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068198

RESUMEN

3D spheroids of primary human hepatocytes (3D PHH) retain a differentiated phenotype with largely conserved metabolic function and proteomic fingerprint over weeks in culture. As a result, 3D PHH are gaining importance as a model for mechanistic liver homeostasis studies and in vitro to in vivo extrapolation (IVIVE) in drug discovery. However, the kinetics and regulation of drug transporters have not yet been assessed in 3D PHH. Here, we used organic cation transporter 1 (OCT1/SLC22A1) as a model to study both transport kinetics and the long-term regulation of transporter activity via relevant signalling pathways. The kinetics of the OCT1 transporter was studied using the fluorescent model substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) and known OCT1 inhibitors in individual 3D PHH. For long-term studies, 3D PHH were treated with xenobiotics for seven days, after which protein expression and OCT1 function were assessed. Global proteomic analysis was used to track hepatic phenotypes as well as prototypical changes in other regulated proteins, such as P-glycoprotein and Cytochrome P450 3A4. ASP+ kinetics indicated a fully functional OCT1 transporter with a Km value of 14 ± 4.0µM as the mean from three donors. Co-incubation with known OCT1 inhibitors decreased the uptake of ASP+ in the 3D PHH spheroids by 35-52%. The long-term exposure studies showed that OCT1 is relatively stable upon activation of nuclear receptor signalling or exposure to compounds that could induce inflammation, steatosis or liver injury. Our results demonstrate that 3D PHH spheroids express physiologically relevant levels of fully active OCT1 and that its transporter kinetics can be accurately studied in the 3D PHH configuration. We also confirm that OCT1 remains stable and functional during the activation of key metabolic pathways that alter the expression and function of other drug transporters and drug-metabolizing enzymes. These results will expand the range of studies that can be performed using 3D PHH.


Asunto(s)
Hepatocitos , Transportador 1 de Catión Orgánico , Esferoides Celulares , Humanos , Células Cultivadas , Hepatocitos/metabolismo , Cinética , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/genética , Transportador 1 de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/genética , Proteómica/métodos , Transducción de Señal , Esferoides Celulares/metabolismo
2.
Int J Biochem Mol Biol ; 15(3): 60-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021868

RESUMEN

OBJECTIVES: The current study aimed to correlate OCT1 (organic cation transporter 1) polymorphisms with metformin response variability in Iraqi women with PCOS (polycystic ovarian syndrome) and determine the impact of OCT1 polymorphism. PCOS, an endocrine metabolic disorder, can seriously impact female health including infertility. Although its cause is unclear, it is usually known to be associated with hormonal imbalances. OCT1 is essential for metformin absorption in the liver. Recent research shown that OCT1 polymorphisms affects metformin responsiveness. METHODS: In the present work, a prospective case-control study was conducted at Department of Infertility, Karbala Teaching Hospital for Obstetrics and Gynecology. 100 PCOS patients and 50 healthy controls aged 20-40 were enrolled. Consultant gynecologist diagnosed PCOS patients using Rotterdam criteria and recommended metformin 500 mg twice daily for 3 months. At the start of the trial and after 3 months, all patients and healthy controls underwent hormonal, biochemical and genetic tests. RESULTS: The similar allelic frequencies of OCT1 polymorphism in PCOS and control groups was observed. Most patients with reference wild type alleles (C) showed considerable hormonal and metabolic responses to metformin, while those with mutant alleles (T) showed non-significant responses. CONCLUSION: FSH, prolactin and testosterone hormonal levels may be considered as candidate biomarkers for PCOS detection and metformin related biomedical respond.

3.
J Fungi (Basel) ; 10(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38921377

RESUMEN

Mitochondria, as the core metabolic organelles, play a crucial role in aerobic respiration/biosynthesis in fungi. Numerous studies have demonstrated a close relationship between mitochondria and Candida albicans virulence and drug resistance. Here, we report an octapeptide-aminopeptidase located in the mitochondrial matrix named Oct1p. Its homolog in the model fungus Saccharomyces cerevisiae is one of the key proteins in maintaining mitochondrial respiration and protein stability. In this study, we utilized evolutionary tree analysis, gene knockout experiments, mitochondrial function detection, and other methods to demonstrate the impact of Oct1p on the mitochondrial function of C. albicans. Furthermore, through transcriptome analysis, real-time quantitative PCR, and morphological observation, we discovered that the absence of Oct1p results in functional abnormalities in C. albicans, affecting hyphal growth, cell adhesion, and biofilm formation. Finally, the in vivo results of the infection of Galleria mellonella larvae and vulvovaginal candidiasis in mice indicate that the loss of Oct1p led to the decreased virulence of C. albicans. In conclusion, this study provides a solid theoretical foundation for treating Candida diseases, developing new targeted drugs, and serves as a valuable reference for investigating the connection between mitochondria and virulence in other pathogenic fungi.

4.
Mol Cell ; 84(10): 1932-1947.e10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38703769

RESUMEN

Mutations in transporters can impact an individual's response to drugs and cause many diseases. Few variants in transporters have been evaluated for their functional impact. Here, we combine saturation mutagenesis and multi-phenotypic screening to dissect the impact of 11,213 missense single-amino-acid deletions, and synonymous variants across the 554 residues of OCT1, a key liver xenobiotic transporter. By quantifying in parallel expression and substrate uptake, we find that most variants exert their primary effect on protein abundance, a phenotype not commonly measured alongside function. Using our mutagenesis results combined with structure prediction and molecular dynamic simulations, we develop accurate structure-function models of the entire transport cycle, providing biophysical characterization of all known and possible human OCT1 polymorphisms. This work provides a complete functional map of OCT1 variants along with a framework for integrating functional genomics, biophysical modeling, and human genetics to predict variant effects on disease and drug efficacy.


Asunto(s)
Simulación de Dinámica Molecular , Transportador 1 de Catión Orgánico , Conformación Proteica , Humanos , Transporte Biológico , Células HEK293 , Mutación , Mutación Missense , Factor 1 de Transcripción de Unión a Octámeros , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo , Farmacogenética , Fenotipo , Relación Estructura-Actividad
5.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791173

RESUMEN

Astrocytes actively participate in neurotransmitter homeostasis by bidirectional communication with neuronal cells, a concept named the tripartite synapse, yet their role in dopamine (DA) homeostasis remains understudied. In the present study, we investigated the kinetic and molecular mechanisms of DA transport in cultured striatal astrocytes of adult rats. Kinetic uptake experiments were performed using radiolabeled [3H]-DA, whereas mRNA expression of the dopamine, norepinephrine, organic cation and plasma membrane monoamine transporters (DAT, NET, OCTs and PMAT) and DA receptors D1 and D2 was determined by qPCR. Additionally, astrocyte cultures were subjected to a 24 h treatment with the DA receptor agonist apomorphine, the DA receptor antagonist haloperidol and the DA precursor L-DOPA. [3H]-DA uptake exhibited temperature, concentration and sodium dependence, with potent inhibition by desipramine, nortriptyline and decynium-22, suggesting the involvement of multiple transporters. qPCR revealed prominent mRNA expression of the NET, the PMAT and OCT1, alongside lower levels of mRNA for OCT2, OCT3 and the DAT. Notably, apomorphine significantly altered NET, PMAT and D1 mRNA expression, while haloperidol and L-DOPA had a modest impact. Our findings demonstrate that striatal astrocytes aid in DA clearance by multiple transporters, which are influenced by dopaminergic drugs. Our study enhances the understanding of regional DA uptake, paving the way for targeted therapeutic interventions in dopaminergic disorders.


Asunto(s)
Astrocitos , Cuerpo Estriado , Dopamina , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Dopamina/metabolismo , Ratas , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Haloperidol/farmacología , Cinética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Apomorfina/farmacología , Células Cultivadas , Masculino , Receptores de Dopamina D1/metabolismo , Transporte Biológico/efectos de los fármacos , Levodopa/farmacología
6.
BMC Cancer ; 24(1): 554, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698344

RESUMEN

BACKGROUND: Prostate cancer is dependent on androgen receptor (AR) signaling, and androgen deprivation therapy (ADT) has proven effective in targeting prostate cancer. However, castration-resistant prostate cancer (CRPC) eventually emerges. AR signaling inhibitors (ARSI) have been also used, but resistance to these agents develops due to genetic AR alterations and epigenetic dysregulation. METHODS: In this study, we investigated the role of OCT1, a member of the OCT family, in an AR-positive CRPC patient-derived xenograft established from a patient with resistance to ARSI and chemotherapy. We conducted a genome-wide analysis chromatin immunoprecipitation followed by sequencing and bioinformatic analyses using public database. RESULTS: Genome-wide analysis of OCT1 target genes in PDX 201.1 A revealed distinct OCT1 binding sites compared to treatment-naïve cells. Bioinformatic analyses revealed that OCT1-regulated genes were associated with cell migration and immune system regulation. In particular, C-terminal Binding Protein 2 (CTBP2), an OCT1/AR target gene, was correlated with poor prognosis and immunosuppressive effects in the tumor microenvironment. Metascape revealed that CTBP2 knockdown affects genes related to the immune response to bacteria. Furthermore, TISIDB analysis suggested the relationship between CTBP2 expression and immune cell infiltration in prostate cancer, suggesting that it may contribute to immune evasion in CRPC. CONCLUSIONS: Our findings shed light on the genome-wide network of OCT1 and AR in AR-positive CRPC and highlight the potential role of CTBP2 in immune response and tumor progression. Targeting CTBP2 may represent a promising therapeutic approach for aggressive AR-positive CRPC. Further validation will be required to explore novel therapeutic strategies for CRPC management.


Asunto(s)
Oxidorreductasas de Alcohol , Proteínas Co-Represoras , Regulación Neoplásica de la Expresión Génica , Factor 1 de Transcripción de Unión a Octámeros , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratones , Animales , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Regulación hacia Arriba , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Microambiente Tumoral , Transducción de Señal
7.
Genes Dev ; 38(7-8): 308-321, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38719541

RESUMEN

The transcription factor Oct4/Pou5f1 is a component of the regulatory circuitry governing pluripotency and is widely used to induce pluripotency from somatic cells. Here we used domain swapping and mutagenesis to study Oct4's reprogramming ability, identifying a redox-sensitive DNA binding domain, cysteine residue (Cys48), as a key determinant of reprogramming and differentiation. Oct4 Cys48 sensitizes the protein to oxidative inhibition of DNA binding activity and promotes oxidation-mediated protein ubiquitylation. Pou5f1 C48S point mutation has little effect on undifferentiated embryonic stem cells (ESCs) but upon retinoic acid (RA) treatment causes retention of Oct4 expression, deregulated gene expression, and aberrant differentiation. Pou5f1 C48S ESCs also form less differentiated teratomas and contribute poorly to adult somatic tissues. Finally, we describe Pou5f1 C48S (Janky) mice, which in the homozygous condition are severely developmentally restricted after E4.5. Rare animals bypassing this restriction appear normal at birth but are sterile. Collectively, these findings uncover a novel Oct4 redox mechanism involved in both entry into and exit from pluripotency.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Factor 3 de Transcripción de Unión a Octámeros , Oxidación-Reducción , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Animales , Ratones , Diferenciación Celular/genética , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos
8.
J Hepatocell Carcinoma ; 11: 839-855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741679

RESUMEN

Introduction: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC) treatment, encounters resistance in many patients. Deciphering the mechanisms underlying sorafenib resistance is crucial for devising alternative strategies to overcome it. Aim: This study aimed to investigate sorafenib resistance mechanisms using a diverse panel of HCC cell lines. Methods: HCC cell lines were subjected to continuous sorafenib treatment, and stable cell lines (Huh 7.5 and Huh 7PX) exhibiting sustained growth in its presence were isolated. The investigation of drug resistance mechanisms involved a comparative analysis of drug-targeted signal transduction pathways (EGFR/RAF/MEK/ERK/Cyclin D), sorafenib uptake, and membrane expression of the drug uptake transporter. Results: HCC cell lines (Huh 7.5 and Huh 7PX) with a higher IC50 (10µM) displayed a more frequent development of sorafenib resistance compared to those with a lower IC50 (2-4.8µM), indicating a potential impact of IC50 variation on initial treatment response. Our findings reveal that activated overexpression of Raf1 kinases and impaired sorafenib uptake, mediated by reduced membrane expression of organic cation transporter-1 (OCT1), contribute to sorafenib resistance in HCC cultures. Stable expression of the drug transporter OCT1 through cDNA transfection or adenoviral delivery of OCT1 mRNA increased sorafenib uptake and successfully overcame sorafenib resistance. Additionally, consistent with sorafenib resistance in HCC cultures, cirrhotic liver-associated human HCC tumors often exhibited impaired membrane expression of OCT1 and OCT3. Conclusion: Intrinsic differences among HCC cell clones, affecting sorafenib sensitivity at the expression level of Raf kinases, drug uptake, and OCT1 transporters, were identified. This study underscores the potential of HCC tumor targeted OCT1 expression to enhance sorafenib treatment response.

9.
J Transl Med ; 22(1): 347, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605354

RESUMEN

BACKGROUND: THOC7-AS1 and FSTL1 expression are frequently upregulated in cutaneous squamous cell carcinoma (cSCC). However, their molecular biological mechanisms remain elusive and their potential as therapeutic targets needs urgent exploration. METHODS: Human tissue samples were used to evaluate clinical parameters. In vitro and in vivo experiments assessed biological functions. Quantitative PCR, western blot, immunohistochemistry, immunocytochemistry, immunoprecipitation, RNA fluorescence in situ hybridization, RNA pull-down, RNA immunoprecipitation, silver staining, chromatin immunoprecipitation, dual luciferase reporter assays etc. were utilized to explore the molecular biological mechanisms. RESULTS: We found FSTL1 is an oncogene in cSCC, with high expression in tumor tissues and cells. Its elevated expression closely associates with tumor size and local tissue infiltration. In vitro and in vivo, high FSTL1 expression promotes cSCC proliferation, migration and invasion, facilitating malignant behaviors. Mechanistically, FSTL1 interacts with ZEB1 to promote epithelial-to-mesenchymal transition (EMT) in cSCC cells. Exploring upstream regulation, we found THOC7-AS1 can interact with OCT1, which binds the FSTL1 promoter region and promotes FSTL1 expression, facilitating cSCC progression. Finally, treating tumors with THOC7-AS1 antisense oligonucleotides inhibited cSCC proliferative and migratory abilities, delaying tumor progression. CONCLUSIONS: The THOC7-AS1/OCT1/FSTL1 axis regulates EMT and promotes tumor progression in cSCC. This study provides clues and ideas for cSCC targeted therapy.


Asunto(s)
Carcinoma de Células Escamosas , Proteínas Relacionadas con la Folistatina , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas Relacionadas con la Folistatina/genética , Proteínas Relacionadas con la Folistatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ , ARN , ARN Largo no Codificante/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
10.
Antioxidants (Basel) ; 13(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38671948

RESUMEN

Endothelin-1 is a key regulator of vascular tone and blood pressure in health and disease. We have recently found that ET-1 production in human microvascular endothelial cells (HMECs) can be promoted by angiotensin II (Ang II) through a novel mechanism involving octamer-binding transcription factor-1 (Oct-1), NADPH oxidase-2 (NOX2), and superoxide anions. As the formation of bioactive ET-1 also depends on endothelin-converting enzyme-1 (ECE-1), we investigated the transcriptional regulation of the ECE1 gene. We found that exposure of HMECs to Ang II resulted in a concentration- and time-dependent increase in ECE1 mRNA expression. Pharmacological inhibition of ECE-1 reduced Ang II-stimulated ET-1 release to baseline values. The effect of Ang II on ECE1 mRNA expression was associated with Oct-1 binding to the ECE1 promoter, resulting in its increased activity. Consequently, the Ang II-stimulated increase in ECE1 mRNA expression could be prevented by siRNA-mediated Oct-1 inhibition. It could also be abolished by silencing the NOX2 gene and neutralizing superoxide anions with superoxide dismutase. In mice fed a high-fat diet, cardiac expression of Ece1 mRNA increased in wild-type mice but not in Nox2-deficient animals. It can be concluded that Ang II engages Oct-1, NOX2, and superoxide anions to stimulate ECE1 expression in the endothelium.

11.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673944

RESUMEN

It is important to search for cytostatic compounds in order to fight cancer. One of them could be 2'-methylthiamine, which is a thiamine antimetabolite with an additional methyl group at the C-2 carbon of thiazole. So far, the cytostatic potential of 2'-methylthiamine has not been studied. We have come forward with a simplified method of synthesis using commercially available substrates and presented a comparison of its effects, as boosted by oxythiamine, on normal skin fibroblasts and HeLa cancer cells, having adopted in vitro culture techniques. Oxythiamine has been found to inhibit the growth and metabolism of cancer cells significantly better than 2'-methylthiamine (GI50 36 and 107 µM, respectively), while 2'-methylthiamine is more selective for cancer cells than oxythiamine (SI = 180 and 153, respectively). Docking analyses have revealed that 2'-methylthiamine (ΔG -8.2 kcal/mol) demonstrates a better affinity with thiamine pyrophosphokinase than thiamine (ΔG -7.5 kcal/mol ) and oxythiamine (ΔG -7.0 kcal/mol), which includes 2'-methylthiamine as a potential cytostatic. Our results suggest that the limited effect of 2'-methylthiamine on HeLa arises from the related arduous transport as compared to oxythiamine. Given that 2'-methylthiamine may possibly inhibit thiamine pyrophosphokinase, it could once again be considered a potential cytostatic. Thus, research should be carried out in order to find the best way to improve the transport of 2'-methylthiamine into cells, which may trigger its cytostatic properties.


Asunto(s)
Simulación del Acoplamiento Molecular , Oxitiamina , Humanos , Células HeLa , Oxitiamina/farmacología , Oxitiamina/química , Oxitiamina/metabolismo , Tiamina/farmacología , Tiamina/análogos & derivados , Tiamina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Simulación por Computador
12.
Mol Cell ; 84(6): 1149-1157.e7, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38309274

RESUMEN

OCA-B, OCA-T1, and OCA-T2 belong to a family of coactivators that bind to POU transcription factors (TFs) to regulate gene expression in immune cells. Here, we identify IκBζ (encoded by the NFKBIZ gene) as an additional coactivator of POU TFs. Although originally discovered as an inducible regulator of NF-κB, we show here that IκBζ shares a microhomology with OCA proteins and uses this segment to bind to POU TFs and octamer-motif-containing DNA. Our functional experiments suggest that IκBζ requires its interaction with POU TFs to coactivate immune-related genes. This finding is reinforced by epigenomic analysis of MYD88L265P-mutant lymphoma cells, which revealed colocalization of IκBζ with the POU TF OCT2 and NF-κB:p50 at hundreds of DNA elements harboring octamer and κB motifs. These results suggest that IκBζ is a transcriptional coactivator that can amplify and integrate the output of NF-κB and POU TFs at inducible genes in immune cells.


Asunto(s)
ADN , FN-kappa B , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , ADN/genética , ADN/metabolismo
13.
Biomolecules ; 14(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254723

RESUMEN

BOB1, a mammalian lymphocyte-specific transcriptional coactivator of the transcription factors OCT1 and OCT2 (OCT1/2), plays important roles in normal immune responses, autoimmunity, and hematologic malignancies. The issue of a DNA sequence preference change imposed by BOB1 was raised more than two decades ago but remains unresolved. In this paper, using the EMSA-SELEX-Seq approach, we have reassessed the intrinsic ability of BOB1 to modulate the specificity of DNA recognition by OCT1 and OCT2. Our results have reaffirmed previous conclusions regarding BOB1 selectivity towards the dimer configuration of OCT1/2. However, they suggest that the monomeric configuration of these factors, assembled on the classical octamer ATGCAAAT and related motifs, are the primary targets of BOB1. Our data further specify the DNA sequence preference imposed by BOB1 and predict the probability of ternary complex formation. These results provide an additional insight into the action of BOB1-an essential immune regulator and a promising molecular target for the treatment of autoimmune diseases and hematologic malignancies.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias Hematológicas , Factores del Dominio POU , ADN , Mamíferos , Factores del Dominio POU/metabolismo , Factores de Transcripción/genética , Humanos , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 2 de Transcripción de Unión a Octámeros/metabolismo
14.
Arch Toxicol ; 97(12): 3259-3271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37676300

RESUMEN

Pyrrolizidine alkaloids (PAs) are important plant hepatotoxins, which occur as contaminants in plant-based foods, feeds and phytomedicines. Numerous studies demonstrated that the genotoxicity and cytotoxicity of PAs depend on their chemical structure, allowing for potency ranking and grouping. Organic cation transporter-1 (OCT1) was previously shown to be involved in the cellular uptake of the cyclic PA diesters monocrotaline, retrorsine and senescionine. However, little is known about the structure-dependent transport of PAs. Therefore, we investigated the impact of OCT1 on the uptake and toxicity of three structurally diverse PAs (heliotrine, lasiocarpine and riddelliine) differing in their degree and type of esterification in metabolically competent human liver cell models and hamster fibroblasts. Human HepG2-CYP3A4 liver cells were exposed to the respective PA in the presence or absence of the OCT1-inhibitors D-THP and quinidine, revealing a strongly attenuated cytotoxicity upon OCT1 inhibition. The same experiments were repeated in V79-CYP3A4 hamster fibroblasts, confirming that OCT1 inhibition prevents the cytotoxic effects of all tested PAs. Interestingly, OCT1 protein levels were much lower in V79-CYP3A4 than in HepG2-CYP3A4 cells, which correlated with their lower susceptibility to PA-induced cytotoxicity. The cytoprotective effect of OCT1 inhibiton was also demonstrated in primary human hepatocytes following PA exposure. Our experiments further showed that the genotoxic effects triggered by the three PAs are blocked by OCT1 inhibition as evidenced by strongly reduced γH2AX and p53 levels. Consistently, inhibition of OCT1-mediated uptake suppressed the activation of the DNA damage response (DDR) as revealed by decreased phosphorylation of checkpoint kinases upon PA treatment. In conclusion, we demonstrated that PAs, independent of their degree of esterification, are substrates for OCT1-mediated uptake into human liver cells. We further provided evidence that OCT1 inhibition prevents PA-triggered genotoxicity, DDR activation and subsequent cytotoxicity. These findings highlight the crucial role of OCT1 together with CYP3A4-dependent metabolic activation for PA toxicity.


Asunto(s)
Antineoplásicos , Alcaloides de Pirrolicidina , Humanos , Citocromo P-450 CYP3A/metabolismo , Hígado , Hepatocitos , Alcaloides de Pirrolicidina/metabolismo , Daño del ADN , Antineoplásicos/farmacología
15.
Curr Diabetes Rev ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550919

RESUMEN

BACKGROUND: Solute Carrier Family 22 Member 1 (SLC22A1, also known as OCT1) protein has a vital role in the metabolism of metformin, a first-line anti-diabetes medication. Genetic polymorphism in SLC22A1 influences individual response to metformin. OBJECTIVE: This review aims to compile the current knowledge about the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c levels. METHODS: We followed the PRISMA 2020 standards to conduct a systematic review. We searched the publications for all appropriate evidence on the effects of SLC22A1 genetic polymorphism on metformin pharmacokinetics and HbA1c from January 2002 to December 2022. RESULTS: Initial database searches identified 7,171 relevant studies. We reviewed 155 titles and abstracts after deleting duplicates. After applying inclusion and exclusion criteria, 23 studies remained. CONCLUSION: Three studies found that rs12208357, rs34059508, and G465R had a considerable impact (p < 0.05) on metformin pharmacokinetics, resulting in increased metformin plasma (Cmax), a higher active amount of drug in the blood (AUC), and lower volume of distribution (Vd) (p<0.05). SLC22A1 polymorphisms with effects on HbA1c include rs628031 (four of seven studies), rs622342 (four of six studies), rs594709 (one study), rs2297374, and rs1867351 (one of two studies), rs34130495 (one study), and rs11212617 (one study) (p < 0.05).

16.
Front Microbiol ; 14: 1205906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396389

RESUMEN

HSV-1 hijacks the cellular vesicular secretion system and promotes the secretion of extracellular vesicles (EVs) from infected cells. This is believed to facilitate the maturation, secretion, intracellular transportation and immune evasion of the virus. Intriguingly, previous studies have shown that noninfectious EVs from HSV-1-infected cells exert antiviral effects on HSV-1 and have identified host restrictive factors, such as STING, CD63, and Sp100 packed in these lipid bilayer-enclosed vesicles. Octamer-binding transcription factor-1 (Oct-1) is shown here to be a pro-viral cargo in non-virion-containing EVs during HSV-1 infection and serves to facilitate virus dissemination. Specifically, during HSV-1 infection, the nuclear localized transcription factor Oct-1 displayed punctate cytosolic staining that frequently colocalized with VP16 and was increasingly secreted into the extracellular space. HSV-1 grown in cells bereft of Oct-1 (Oct-1 KO) was significantly less efficient at transcribing viral genes during the next round of infection. In fact, HSV-1 promoted increased exportation of Oct-1 in non-virion-containing EVs, but not the other VP16-induced complex (VIC) component HCF-1, and EV-associated Oct-1 was promptly imported into the nucleus of recipient cells to facilitate the next round of HSV-1 infection. Interestingly, we also found that EVs from HSV-1-infected cells primed cells for infection by another RNA virus, vesicular stomatitis virus. In summary, this investigation reports one of the first pro-viral host proteins packed into EVs during HSV-1 infection and underlines the heterogenetic nature and complexity of these noninfectious double-lipid particles.

17.
Transl Lung Cancer Res ; 12(4): 727-741, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197633

RESUMEN

Background: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality worldwide and its most important risk factor is tobacco smoking. While smoking is associated with inferior outcome in NSCLC patients, smoking also correlates with a higher tumor mutational burden. In contrast to adenocarcinomas (ADC) of non-smokers, that frequently harbor targetable gain-of-function mutations, NSCLC smokers largely present with non-targetable loss-of-function mutations of genes associated with DNA-damage repair. The transcription factor Pit-1, Oct1/2, Unc-86 (POU) domain class 2 transcription factor 1 (POU2F1) is a widely expressed bipotential stabilizer of repressed and inducible transcriptional states and frequently deregulated in cancer. Methods: Via immunohistochemistry, we evaluated POU2F1 protein expression on a tissue micro array of 217 operable stage I-III NSCLC patients. Findings were reproduced in a gene expression database of 1144 NSCLC patients, filtered for POU2F1 mRNA expression. After retroviral overexpression of POU2F1 in A549 cells, we evaluated for clonogenic growth and proliferation. Additionally, CRISPR-Cas9 mediated POU2F1 knockdown in A549 cells was likewise analyzed. Results: High protein expression of POU2F1 in 217 NSCLC patients resulted in improved outcome of smokers with ADC [hazard ratio (HR) 0.30 (0.09-0.99), P=0.035]. Moreover, gene expression analysis confirmed favorable outcome of high POU2F1 mRNA expression in smokers with ADC [HR 0.41 (0.24-0.69), P<0.001]. Other than that, retrovirally induced overexpression of POU2F1 in A549 cells significantly reduced both, clonogenic growth as well as proliferation of NSCLC cells, whereas CRISPR-Cas9 mediated knockdown of the protein did not have any impact. Conclusions: Our data suggest that high expression of POU2F1 mediates a less aggressive cancer phenotype in smokers with ADC NSCLC. Pharmacological induction of genes and signaling pathways controlled by POU2F1 may provide novel avenues for future targeted NSCLC therapies in smokers.

18.
Curr Mol Med ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37246325

RESUMEN

BACKGROUND: Radiofrequency ablation (RFA) is an important treatment strategy for patients with advanced hepatocellular carcinoma (HCC). However, its therapeutic effect is unsatisfactory and recurrence often occurs after RFA treatment. The octamer-binding transcription factor OCT1 is a novel tumour-promoting factor and an ideal target for HCC therapy. OBJECTIVE: This study aimed to expand the understanding of HCC regulation by OCT1. METHODS: The expression levels of the target genes were examined using qPCR. The inhibitory effects of a novel inhibitor of OCT1 (NIO-1) on HCC cells and OCT1 activation were examined using Chromatin immunoprecipitation or cell survival assays. RFA was performed in a subcutaneous tumour model of nude mice. RESULTS: Patients with high OCT1 expression in the tumour tissue had a poor prognosis after RFA treatment (n = 81). The NIO-1 showed antitumor activity against HCC cells and downregulated the expression of the downstream genes of OCT1 in HCC cells, including those associated with cell proliferation (matrix metalloproteinase-3) and epithelial-mesenchymal transition-related factors (Snail, Twist, N-cadherin, and vimentin). In a subcutaneous murine model of HCC, NIO-1 enhanced the effect of RFA treatment on HCC tissues (n = 8 for NIO-1 and n=10 for NIO-1 + RFA). CONCLUSION: This study demonstrated the clinical importance of OCT1 expression in HCC for the first time. Our findings also revealed that NIO-1 aids RFA therapy by targeting OCT1.

19.
Bioanalysis ; 15(5): 259-268, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37073675

RESUMEN

Aim: Isobutyrylcarnitine (IBC) is a possible biomarker for hepatic OCT1, as IBC plasma concentrations are reduced when OCT1 is inhibited. An accessible, characterized assay is needed to quantitate IBC in human plasma. Materials & methods: A triple quadrupole MS surrogate matrix assay for the quantitation of IBC was characterized to support a first-in-human study. Results: An assay for IBC quantitation was fully characterized for accuracy, precision, selectivity and parallelism. IBC was measured in a clinical study and the data were correlated to the in vitro model prediction. Conclusion: A triple quadrupole-based assay for IBC should broaden the monitoring of IBC for OCT1 inhibition in early clinical trials, generating the data needed to establish IBC as a valid biomarker.


The liver has specialized proteins that transport some approved pharmaceuticals in and out of the liver cells. It is important to understand if a new pharmaceutical is also moved by these transporters because if multiple co-taken pharmaceuticals compete for the same transporter, the plasma concentrations of the therapies can change so that one or more of the therapies may become ineffective or even dangerous. Isobutyrylcarnitine, (IBC), is a naturally occurring molecule that circulates in the plasma and whose concentration is reduced when there is competition for the OCT1 transporter. Therefore, IBC is a biomarker for OCT1 competition. We have developed an assay to quantitate IBC in human plasma using common laboratory instrumentation so that competition of a new pharmaceutical with the OCT1 transporter can be evaluated by measuring IBC plasma concentrations in early clinical trials.


Asunto(s)
Transportador 1 de Catión Orgánico , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Biomarcadores
20.
Gastric Cancer ; 26(1): 26-43, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35999321

RESUMEN

BACKGROUND: Imatinib mesylate (IM) is highly effective in the treatment of gastrointestinal stromal tumors (GISTs). However, the most of GISTs patients develop secondary drug resistance after 1-3 years of IM treatment. The aim of this study was to explore the IM-resistance mechanism via the multi-scope combined with plasma concentration of IM, genetic polymorphisms and plasma sensitive metabolites. METHODS: This study included a total of 40 GISTs patients who had been regularly treated and not treated with IM. The plasma samples were divided into three experiments, containing therapeutic drug monitoring (TDM), OCT1 genetic polymorphisms and non-targeted metabolomics. According to the data of above three experiments, the IM-resistant cell line, GIST-T1/IMR cells, was constructed for verification the IM-resistance mechanism. RESULTS: The results of non-targeted metabolomics analysis suggested that the sphingophospholipid metabolic pathway including the SPK1/S1P axis was inferred in IM-insensitive patients with GISTs. A GIST cell line (GIST-T1) was immediately induced as an IM resistance cell model (GIST-T1/IMR) and we found that blocking the signal pathway of SPK1/S1P in the GIST-T1/IMR could sensitize treatment of IM and reverse the IM-resistance. CONCLUSIONS: Our findings suggest that IM secondary resistance is associated with the elevation of S1P, and blockage the signaling pathway of SPK1/S1P warrants evaluation as a potential therapeutic strategy in IM-resistant GISTs. The design of this study from blood management, group information collection, IM plasma concentration with different elements, identification of sphingolipid metabolism and lastly verification the function of SPK1/S1P in the IM-resistance GISTs cells.


Asunto(s)
Antineoplásicos , Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Neoplasias Gástricas , Humanos , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Resistencia a Antineoplásicos , Neoplasias Gástricas/tratamiento farmacológico , Transducción de Señal , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-kit/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA