Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 1): 135555, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276881

RESUMEN

This study addresses the dual challenge of agricultural cost and waste management by harnessing agrarian waste to produce nano-fertilizers (NF) to enhance crop yield while mitigating environmental impacts. Recognizing the limitations of traditional hydrogels' non-biodegradability and their inability to sustain root zone moisture and nutrient levels, we developed an LNR/AAc/pectin hydrogel. This innovative hydrogel offers a viable solution that provides a consistent NF supply and improves water retention efficiently. Additionally, we utilized Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and thermogravimetric analysis (TGA) to analyze the hydrogel's structure, stability, and form. Transmission electron microscopy (TEM) and X-ray fluorescence spectroscopy (XRF) were employed to ascertain the NF concentration. The optimization of the hydrogel's swelling and NF release was conducted through a 5-level, 2-factor Response Surface Methodology (RSM), focusing on the effects of the AAc: LNR ratio and pectin weight while maintaining constant concentrations of potassium persulfate (KPS) and MBA. Results revealed a high correlation between predicted and experimental values, with determination coefficients (R2) of 0.9982 for swelling and 0.9979 for NF release. Furthermore, the hydrogel exhibited a 96.30 % biodegradation rate after 120 days of soil burial. Our findings demonstrate the hydrogels' potential to significantly impact farming and gardening by ensuring a sustainable supply of nutrients to enhance soil moisture retention.

2.
Plants (Basel) ; 13(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204765

RESUMEN

Litter and root decomposition is an important source of soil organic matter and nutrients. To ascertain the contribution of litter and root to natural grassland nutrients in rocky desertification areas, from March 2017 to January 2018, the continuous soil column method, collector method, and litter decomposition method were used to study the soil nutrients, litter and root biomass, decomposition, and nutrient release of potential, moderate, and severe rocky desertification grasslands, as well as their responses to rocky desertification. The results showed that the litter and root decomposition rate showed a trend of being first fast and then slow, and the decomposition rate of litter and root was greater than 50% after 300 days. The annual litter decomposition rates of potential, moderate, and severe rocky desertification grasslands were 69.98%, 62.14%, and 49.79%, respectively, and the annual decomposition rates of root were 73.64%, 67.61%, and 64.09%, respectively. With a deepening degree of rocky desertification, the litter and root decomposition rate decreased. The decomposition coefficients, k, of litter in potential, moderate, and severe rocky desertification grasslands were 1.128, 0.896, and 0.668, respectively, and the decomposition coefficients, k, of root were 1.152, 1.018, and 0.987, respectively. The nutrient release processes of litter and root were different, and the release mode ultimately manifests as "release". In rocky desertification grasslands, the organic carbon (OC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) released by litter and root decomposition were 18.93-263.03 g·m-2·yr-1, 1.79-5.59 g·m-2·yr-1, 0.18-0.47 g·m-2·yr-1, and 0.66-3.70 g·m-2·yr-1, respectively. The contribution of root to soil nutrients was greater than that of litter. The degree of rocky desertification was negatively correlated with the biomass, decomposition rate, and nutrient return amount of litter and root. The results of this study provide direct field evidence and illustrate the contribution of litter and root decomposition in rocky desertification grasslands to soil nutrients.

3.
Environ Pollut ; 356: 124250, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810685

RESUMEN

Biochar was generally used to reduce the macronutrient releases and to mitigate N2O gas emissions in cropland. This experiment evaluated the trend of major plant nutrient releases using the modified Hyperbola model and the greenhouse gas emissions by incorporating different poultry manure compost biochar with organic resources. The treatments consisted of the control as the organic fertilizer materials, the incorporated poultry manure compost biochar with organic fertilizer materials (PMCBF), and the incorporated plasma-activated poultry manure compost biochar with organic fertilizer materials (PAMBF) under redox conditions. The results showed that the cumulated highest concentrations of NH4-N and NO3-N were 2168.6 mg L-1 and 21.7 mg L-1 in the control, respectively. Compared with the control, the predicted reduction rates of NH4-N release from the PMCBF and PAMBF were 26.2% and 15.4%, respectively. In the control, the cumulated highest concentrations of PO4-P and K in leachate were 681.04 mg L-1 and 120.5 mg L-1, respectively. The predicted reduction rates of PO4-P and K were 55.1% and 15.5%, respectively, under the PAMBF compared to the control. The modified Hyperbola model with cumulated NH4-N, PO4-P, and K-releases under the treatments was a good fit (p < 0.0001). For greenhouse gas (GHG) emissions, the lowest cumulative N2O was 59.59 mg m-2 in the soil incorporated with PMCBF, and its reduction rate was 23.5% compared with the control. The findings of this study will contribute to more profound insights into the potential application of PAMBF and PMCBF as bio-fertilizers adapted to mitigate NH4-N, PO4-P, and K releases and N2O emissions, offering scientific evidence for organic farming strategies.


Asunto(s)
Carbón Orgánico , Compostaje , Fertilizantes , Estiércol , Óxido Nitroso , Aves de Corral , Carbón Orgánico/química , Animales , Fertilizantes/análisis , Óxido Nitroso/análisis , Compostaje/métodos , Contaminantes Atmosféricos/análisis , Suelo/química , Nutrientes/análisis , Gases de Efecto Invernadero/análisis
4.
Sci Total Environ ; 926: 172172, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38575019

RESUMEN

To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.


Asunto(s)
Fertilizantes , Magnesio , Estruvita/química , Magnesio/química , Fertilizantes/análisis , Óxido de Magnesio , Fósforo/química , Carbón Orgánico/química , Suelo/química , Nitrógeno/análisis
5.
J Hazard Mater ; 468: 133820, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382339

RESUMEN

The escalating accumulation of plastic waste in ecosystems poses a significant health concern to soil environment, yet the environmental effects of plastics remains largely unexplored. Biodegradable plastics could offer a viable alternative to conventional persistent plastics, but our understanding of their potential benefits or detrimental effects on the decomposition of plant debris by soil biomass is limited. In this study, we conducted a year-long field experiment to examine the environmental response and impact on plant debris decomposition in the presence of varying quantities of persistent versus biodegradable plastics. Our findings indicate that the decomposition rate decreased by 2.8-4.9% for persistent plastics, while it increased by 1.3-4.2% for biodegradable plastics. Persistent plastics primarily induced adverse effects, including a reduction in soil nutrients, microbial diversity, bioturbation, enzyme activity, easily decomposable carbon, and microbial biomass carbon in plant debris. In contrast, biodegradable plastics resulted in beneficial effects such as an increase in enzyme activity, microbial biomass carbon, and easily decomposable carbon. We also observed that the decomposition rate of plant residues and nutrient release are closely associated with changes in the organic carbon chemical structure induced by different plastic film fragments. A significant shift in alkoxy carbon content facilitated the release of nutrients and soluble carbon, while modifications in carboxyl and aromatic carbon content hindered their release. Overall, our study reveals over one year that biodegradable plastics primarily induce positive effects on the decomposition of soil organic matter.


Asunto(s)
Plásticos Biodegradables , Suelo , Suelo/química , Ecosistema , Compuestos Orgánicos , Carbono , Plásticos/química
6.
Huan Jing Ke Xue ; 44(9): 5025-5035, 2023 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-37699820

RESUMEN

The nutrient release characteristics of four types of composts, pure municipal sewage sludge compost, corn straw biochar (CSB) improved compost, effective microorganism agent (EM) improved compost, and CSB+EM improved compost, in coastal wetland soil were examined through a soil incubation experiment. The effects of different composts on the spectral characteristics of soil dissolved organic matter (DOM) and microbial community were also investigated. The results demonstrated that the compost additions could significantly reduce soil pH, while increasing soil electrical conductivity and contents of plant available nutrients (e.g., dissolved organic carbon, NH4+-N, NO3--N, available phosphorus, and available potassium). By comparing the nutrient release potential among the improved composts, the CSB+EM-improved compost (CSB+EM-C) evidently had the highest nutrient release potential. Furthermore, the DOM in CSB+EM-C amended soil exhibited a higher humification degree than that of the other composts. The high-throughput sequencing results indicated that the compost additions increased the relative abundances of dominant bacteria at the phylum level, such as the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. CSB+EM-C exhibited a greater potential to improve the relative abundance of these dominant bacteria phyla than other improved composts. Overall, among all the improvement approaches, the combined use of CSB and EM agent was the optimal composting strategy owing to its highest potentials of nutrient supply and soil quality improvement. The present findings can provide a solid scientific theoretical basis for establishing an effective technology strategy involving the combination of municipal sewage sludge utilization and degraded coastal wetland soil remediation.


Asunto(s)
Compostaje , Aguas del Alcantarillado , Materia Orgánica Disuelta , Nutrientes , Suelo
7.
Bioresour Technol ; 381: 129127, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137448

RESUMEN

This study performed co-digestion of poultry litter (PL) with wheat straw in the daily anaerobic sequencing batch reactor considering operation parameters of carbon-to-nitrogen ratio (C/N, 11.6 to 28.4), total solids (TS, 2.6 to 9.4%), and hydraulic retention time (HRT, 7.6 to 24.4d). The inoculum with a diverse microbial community structure included 2% of methanogens (Methanosaeta) was chosen. Experimental performance by central composite design showed continuous methane production with the highest biogas production rate (BPR) obtained at C/N = 20, TS = 6%, and HRT = 7.6d, being (1.18 ± 0.14 L/LR/d). A significant modified quadratic model (p < 0.0001) for predicting BPR was built (R2 = 0.9724). The operation parameters and process stability both affected the release of nitrogen, phosphorus, and magnesium in the effluent. The results provided new support for the novel reactor operations for efficient bioenergy production from PL and agricultural wastes.


Asunto(s)
Carbono , Aves de Corral , Animales , Anaerobiosis , Triticum/química , Nitrógeno/análisis , Metano , Biocombustibles , Digestión , Reactores Biológicos
8.
Sci Total Environ ; 881: 163491, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37068669

RESUMEN

Imbalanced nitrogen (N) and phosphorus (P) depositions are profoundly shifting terrestrial ecosystem biogeochemical processes. However, how P addition and its interaction with N addition influence the release of litter carbon (C), N, P, and especially metal nutrients in subtropical forests remains unclear. Herein, a two-year field litterbag experiment was conducted in a natural subtropical evergreen broadleaved forest of southwestern China using a factorial design with three levels of N addition (0, 10, and 20 g N m-2 y-1) and P addition (0, 5, 15 g P m-2 y-1). During two years of decomposition, N- and P-only addition treatments decreased the accumulated mass loss and release rates of litter C, N, P, K, Na, and Mn (p < 0.05); N and P coaddition treatments increased the accumulated mass loss and release rates of litter C, N, K, Na, Mn, and Cu (p < 0.05) and decreased the accumulated release rates of litter P and Mg (p < 0.05); the C/P and N/P ratios of the residual litter increased under the N-only addition treatments (p < 0.05) and decreased under the P-only addition and N and P coaddition treatments (p < 0.05). Overall, the results suggest that combined N and P supply can increase biological activities and thus accelerate the release of litter C, N, and most metal nutrients, as expected within the framework of ecological stoichiometry and growth rate hypothesis. Our study also highlights that the effect of N addition on litter C and nutrients release depends on P availability.


Asunto(s)
Ecosistema , Suelo , Hojas de la Planta , Bosques , Nitrógeno , Metales , Nutrientes , China , Carbono
9.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771092

RESUMEN

In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Hierro/química , Aguas del Alcantarillado , Peróxido de Hidrógeno , Contaminantes Químicos del Agua/química , Carbón Orgánico
10.
Environ Sci Technol ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633549

RESUMEN

Increased periods of bottom water anoxia in deep temperate lakes due to decreasing frequency and depth of water column mixing in a warming climate may result in the reductive dissolution of iron minerals and increased flux of nutrients from the sediment into the water column. Here, we assessed the sediment properties and reactivities under depleted oxygen concentrations of Lake Tahoe, a deep ultraoligotrophic lake in the Sierra Nevada mountain range. Using whole-core incubation experiments, we found that a decrease in dissolved oxygen concentration in the top 2 cm of the sediment resulted in an extension of the microbial iron reduction zone from below 4.5 to below 1.5 cm depth. Concentrations of reactive iron generally decreased with sediment depth, and microbial iron reduction seemingly ceased as concentrations of Fe(II) approximated concentrations of reactive iron. These findings suggest that microorganisms preferentially utilized reactive iron and/or iron minerals became less reactive due to mineral transformation and surface passivation. The estimated release of iron mineral-associated phosphorus is not expected to change Lake Tahoe's trophic state but will likely contribute to increased phytoplankton productivity if mixed into surface waters.

11.
Environ Technol ; 44(8): 1114-1124, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34704537

RESUMEN

The microwave enhanced advanced oxidation process (MW-AOP) has been applied to pre-treat different sludge types and high solids content. Secondary sludge not only had the highest solids and nutrient content but also yielded higher treatment efficiency than primary or mixed sludge. In the case of secondary sludge with 4% total solids (TS), the total suspended solids (TSS) concentration was reduced by 32% while soluble chemical oxygen demand concentration increased from 1% to 40% after treatment at 110°C. A high level of nutrient release was also achieved; about 65% total phosphate (TP) solubilized at 110°C. The degree of secondary sludge disintegration was dictated by temperature and hydrogen peroxide dosage. The optimal operating temperature for the system was 110°C, and sludge containing TS up to 8% was treated effectively. Secondary sludge with 8% TS had a TSS reduction of 41% after treatment at 110°C while COD solubilization was about 45%; about 55% TP was solubilized at 10 min holding time. Treatment of sludge with higher solids content would allow for handling larger amounts of sludge at a given period and reduce heating cost per unit of treated sludge. The inter-relationship between the degree of sludge disintegration and changes in chemical and physical properties was also clearly demonstrated here. The treated sludge would be an ideal substrate for anaerobic digestion or phosphorous recovery processes. High levels of nutrients (phosphorus and nitrogen) and metal release, and solids disintegration from sludge containing high solids content would make subsequent resource recovery processes more effective and economical.


Asunto(s)
Microondas , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Oxidación-Reducción , Peróxido de Hidrógeno/química , Temperatura , Fosfatos/química , Fósforo
12.
Sci Total Environ ; 860: 160478, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36574551

RESUMEN

The contradiction between population growth and soil degradation has been increasingly prominent, such that novel fertilizers (e.g., biochar and microbial fertilizers) should be urgently developed. Biochar is a promising fertilizer carrier for microbial fertilizers due to its porous structure. However, the preparation and mechanisms of the effects of biochar-based microbial fertilizers have been rarely investigated. In this study, biochar, Bacillus, and exogenous N-P-K fertilizers served as the raw materials to prepare biochar-based microbial fertilizers (BCMFs) by optimizing the preparation methods and the process parameters. Moreover, the release patterns of N-P-K were analyzed. A pot experiment was performed on pakchoi to examine the effect of the BCMFs and explore its synergistic effect on soil fertility. The results of this study indicated that adsorption by biochar maintained bacterial activity, whereas the granulation process reduced bacterial activity. The adsorption-granulation process increased the content of total nitrogen and organic matter in the soil while enhancing the slow-release effect of the BCMFs. The Elovich model was capable of describing the nitrogen release of the BCMFs, including the diffusion and chemical processes. As indicated by the result of the column leaching experiment, the BCMFs stopped nutrient leaching more significantly than the conventional fertilizers (CF), especially in stopping N and P leaching. The use of the BCMFs improved the available soil nutrients and soil quality while enhancing the abundance of bacteria correlated with carbon and nitrogen metabolism in the soil. Moreover, a 20 % reduction in the use of the BCMFs did not significantly affect the soil available N and P and the growth status of pakchoi. The result of redundancy analysis indicated that the cation exchange capacity (CEC), NH4+-N, NO3--N, ß-glucosidase (BG), urease (URE), and alkaline phosphatase (AlkP) were the six critical environmental factors for the microbial community structure and could explain 94.8 % of the variance. The BCMFs up-regulated the levels of the above six factors, especially CEC and BG, thus improving the soil quality and enhancing the soil fertility.


Asunto(s)
Fertilizantes , Suelo , Suelo/química , Fertilizantes/análisis , Carbón Orgánico/química , Nitrógeno/análisis , Bacterias , Nutrientes/análisis , Microbiología del Suelo
13.
Sci Total Environ ; 863: 160921, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36535486

RESUMEN

The release of nutrients back into the water column due to macrophyte litter decay could offset the benefits of nutrient removal by hydrophytes within urban streams. However, the influence of this internal nutrient cycling on the overlying water quality and bacterial community structure is still an open question. Hence, litter decomposition trials using six hydrophytes, Typha latifolia (TL), Phragmites australis (PAU), Hydrilla verticillata (HV), Oenanthe javanica (OJ), Myriophyllum aquaticum (MA), and Potamogeton crispus (PC), were performed using the litterbag approach to mimic a 150-day plant litter decay in sediment-water systems. Field assessment using simple in/out mass balances and uptake by plant species was carried out to show the potential for phytoremediation and its mechanisms. Results from two years of monitoring (2020-2021) indicated mean total nitrogen (TN) retention efficiencies of 7.2-60.14 % and 9.5-55.6 % for total phosphorus (TP) in the studied vegetated urban streams. Nutrient retention efficiencies showed temporal variations, which depended on seasonal temperature. Mass balance analysis indicated that macrophyte assimilation, sediment adsorption, and microbial transformation accounted for 10.31-41.74 %, 0.84-3.00 %, and 6.92-48.24 % removal of the inlet TN loading, respectively. Hydrophyte detritus decay induced alterations in physicochemical parameters while significantly increasing the N and P levels in the overlying water and sediment. Decay rates varied among macrophytes in the order of HV (0.00436 g day-1) > MA (0.00284 g day-1) > PC (0.00251 g day-1) > OJ (0.00135 g day-1) > TL (0.00095 g day-1) > PAU (0.00057 g day-1). 16S rRNA gene sequencing analysis showed an increase in microbial species richness and diversity in the early phase of litter decay. The abundances of denitrification (nirS and nirK) and nitrification (AOA and AOB) genes also increased in the early stage and then decreased during the decay process. Results of this study conducted in seven urban streams in northern China demonstrate the direct effects of hydrophytes in encouraging nutrient transformation and stream self-purification. Results also demonstrate that macrophyte detritus decay could drive not only the nutrient conversions but also the microbial community structure and activities in sediment-water systems. Consequently, to manage internal sources and conversions of nutrients, hydrophytic detritus (e.g., floating/submerged macrophytes) must be suppressed and harvested.


Asunto(s)
Hydrocharitaceae , Microbiota , Ríos , ARN Ribosómico 16S , Plantas , Nutrientes/análisis , Nitrógeno/análisis , Fósforo/análisis
14.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499461

RESUMEN

This review presents data from the past five years on the use of polymeric superabsorbent hydrogels in agriculture as water and nutrient storage and retention materials, as well as additives that improve soil properties. The use of synthetic and natural polymeric hydrogels for these purposes is considered. Although natural polymers, such as various polysaccharides, have undoubted advantages related to their biocompatibility, biodegradability, and low cost, they are inferior to synthetic polymers in terms of water absorption and water retention properties. In this regard, the most promising are semi-synthetic polymeric superabsorbents based on natural polymers modified with additives or grafted chains of synthetic polymers, which can combine the advantages of natural and synthetic polymeric hydrogels without their disadvantages. Such semi-synthetic polymers are of great interest for agricultural applications, especially in dry regions, also because they can be used to create systems for the slow release of nutrients into the soil, which are necessary to increase crop yields using environmentally friendly technologies.


Asunto(s)
Hidrogeles , Polímeros , Agricultura , Suelo , Agua
15.
Artículo en Inglés | MEDLINE | ID: mdl-36294157

RESUMEN

The abundant growth in cyanobacterial blooms poses severe ecological threats with a high risk to aquatic organisms and global public health. Control of cyanobacterial blooms involves spraying cyanobacteria removal materials, including coagulants. However, little is known about the fate of the coagulated-cyanobacteria-laden water. Here, we examined long-term changes in water quality following treatment with various coagulants and minerals for cyanobacterial removal when the coagulated cyanobacterial cells were not removed from the water. An experiment in a controlled water system tested the effects of six different compounds, one conventional coagulant, two natural inorganic coagulants, and three minerals. All tested coagulants and minerals exhibited >75% of cyanobacterial removal efficiency. However, compared to the control, higher concentrations of nitrogen were observed from some samples treated during the experimental period. After 20 months, the final total phosphorus concentration of the raw water increased 20-fold compared to the initial concentration to 11.82 mg/L, indicating significant nutrient release over time. Moreover, we observed that the decomposition of sedimented cyanobacterial cells caused the release of intracellular contents into the supernatant, increasing phosphorous concentration over time. Therefore, cyanobacterial cells should be removed from water after treatment to prevent eutrophication and maintain water quality.


Asunto(s)
Cianobacterias , Eutrofización , Fósforo , Nitrógeno , Minerales , Lagos/química
16.
Gels ; 8(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36135260

RESUMEN

There is a need to develop sustainably sourced products that can address the needs for improved water retention in soils, slow the release rate of fertilizers (to prevent leaching and downstream eutrophication), and control soil pH for use in agriculture. This article investigates the use of industrial kelp solid waste extracted alginate (IW) slurries to produce soil amendment beads, potentially improving soil water retention, acting as slow-release fertilizers (SRFs), and combined with limestone controls soil pH levels. Alginate extracted from the IW was determined to have a lower guluronic (G) to mannuronic (M) acid ratio than pure laboratory-grade (LG) alginate (0.36 vs. 0.53). Hydrogels produced from the IW alginate achieved significantly higher equilibrium swelling ratios (1 wt% IW = 1.80) than LG hydrogels with similar concentrations (1 wt% LG = 0.61). Hydrogel beads were impregnated with ammonium nitrate and potassium chloride to produce potential SRFs. The release rates of K+ and NO3- nutrients from the produced SRFs into deionised water were decreased by one order of magnitude compared to pure salts. The nutrient release rates of the IW-based SRFs were shown to be similar to SRFs produced from LG alginate. Hydrogel beads were impregnated with limestone, and it was determined that the alginate-based hydrogels could significantly decrease the nutrient release rate. Using industrial kelp solid waste extracted alginate slurries shows potential for soil amendments production. This report emphasises, for the first time, the use of a crude alginate product in soil amendment formation. Further, it demonstrates slower release rates and soil pH control.

17.
Sci Total Environ ; 844: 157115, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35787902

RESUMEN

Litter decomposition is a major method in which nutrients are recycled, especially carbon and nitrogen elements, in terrestrial ecosystems. However, how the responses of litter quality and soil microbial communities to global changes alter litter decomposition remains unclear. A 4-year field manipulative experiment based on the litterbag method was conducted in a typical temperate semiarid grassland in China to explore how increased precipitation and nitrogen deposition affect decomposition processes via litter quality and soil microbial communities. Our results showed that water and nitrogen addition treatments could accelerate litter carbon release and promote mass loss through different pathways. Water addition had a direct positive effect on litter decomposition. However, nitrogen addition could indirectly promote litter decomposition by improving litter quality and increasing the bacterial and fungal ratios. The water addition treatment increased litter mass loss by 7.37 %, and the N addition treatments increased litter mass loss by 5.83 %-16.93 %. Moreover, water and nitrogen additions had antagonistic effects on litter decomposition. These findings revealed that litter quality and the soil bacterial to fungal ratio were the factors controlling litter decomposition. The changes in precipitation and nitrogen deposition will impact ecosystem carbon and nitrogen cycling by altering litter decomposition processes in semiarid grassland ecosystems under the context of climate change.


Asunto(s)
Microbiota , Nitrógeno , Bacterias , Carbono , Ecosistema , Pradera , Nitrógeno/química , Hojas de la Planta , Suelo/química , Agua
18.
Environ Sci Pollut Res Int ; 29(50): 75455-75470, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35653024

RESUMEN

The impact of different climate scenarios, drought, and water level management on the outflow water quality of peatlands has been investigated. A mesocosm experiment has been conducted within climate control chambers to simulate current (2016-2019 real-time) and future representative concentration pathway (RCP) climate scenarios (RCP 2.6, 4.5 and 8.5). To assess the efficiency of a management strategy for improving peatland water quality, water level adjustment was applied to half of the system at the same time for each climate scenario. Furthermore, the mesocosm experienced the 2018 European drought during the simulation years, and the corresponding impact was analyzed. The results of this study revealed a substantial and favorable impact of water level management on water quality of peatlands under different climate scenarios. The effect of water level management was the largest for ammonium (NH4-N) and 5-day biochemical oxygen demand (BOD5), and the smallest for total phosphorus (TP). Drought had a strong impact on chemical variables, increasing their concentration and deteriorating the water quality of peatland outflow. However, water level management can stabilize the nutrient levels in peatland outflows, particularly during drought and under warmer climate scenarios, thus mitigating the adverse effects of climate change.


Asunto(s)
Compuestos de Amonio , Cambio Climático , Carbono/metabolismo , Sequías , Oxígeno , Fósforo , Suelo , Calidad del Agua
19.
Environ Geochem Health ; 44(5): 1471-1485, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-32959186

RESUMEN

Based on the main components in the residual soil to meet the characteristics of ceramic grain production raw materials, and combining with the principle of anti-filter layer technology for seepage control of hydraulic buildings, a lead wire cage filled with silt grains made from lake dehydration silt can be obtained. Moreover, the same-position treatment method of bed surface is desilted by this kind of ceramic lead wire cage in a reasonable structural form to improve water environment. In order to investigate the inhibition effect of this method on sediment resuspension, the effect law on water quality and the growth of indigenous microorganisms, 25 experimental groups were constructed to simulate 5 flow patterns of eutrophic lakes in this paper. We can analyze the inhibition effect of ceramic lead wire cage on sediment resuspension by monitoring the change of suspended matter content, monitoring the concentration change of ammonia nitrogen and soluble phosphorus can show the effect of ceramic lead cage on water quality, and monitoring the dissolved oxygen content can indirectly reflect the effect of the growth of indigenous microorganisms to some extent. The results show that in a certain flow mode, the ceramic lead wire cage can effectively inhibit the resuspension of the sediments, prevent the release of nitrogen and phosphorus nutrients in the sediments, and promote the growth of microbial attachment. The research results will maximize the benefits of the utilization of silt resources, and will optimize the in situ repair methods, and have broad application prospects.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , China , Mezclas Complejas , Sedimentos Geológicos/química , Lagos/química , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 815: 151977, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838906

RESUMEN

Achieving sustainable agricultural development requires the efficient use of nutrient resources for crop production. Recovering nutrients from animal manures may play a key role in achieving this. Animal manures typically have low nutrient concentrations, and in ratios that are often not ideal for balanced crop nutrition. Here, combinations of organic and inorganic phosphorus (P) were formulated as granular products (organomineral fertilisers) with granule size suitable for transport and spreading. The fertilisers were produced by granulating powdered chicken litter with MAP and urea powders making the following formulations: 0:4, 1:3, 2:2, 3:1, 4:0. The kinetics of NH4+-N and P release from the fertilisers, and the effects on tomato growth and nutrition, as well as arbuscular mycorrhizal formation in roots following fertiliser application, were determined. Cumulative NH4+-N release ceased within 12 h, and was lower in the formulations with higher proportions of chicken litter. The cumulative P released reached approximately 80% of total P in all formulations, and the time to obtain maximum P dissolution was 19 days in the formulation that contained only chicken litter. The organomineral fertilisers increased tomato shoot growth by 15-28% compared to the chicken litter only, MAP only and MAP/urea formulations. Reasonable levels of mycorrhizal colonisation of tomato roots was achieved with the organomineral fertilisers. The results demonstrated that optimum plant growth does not depend solely on immediately available P, and that timing of nutrient supply to match plant demand is important. The combination of chicken litter with MAP sustained nutrient supply and improved plant growth. Taken together, organomineral fertiliser formulations are potential alternatives to inorganic P fertilisers that can improve crop growth and nutrition, while provide a sustainable use for animal production wastes.


Asunto(s)
Micorrizas , Solanum lycopersicum , Agricultura , Animales , Fertilizantes/análisis , Micorrizas/química , Fósforo , Raíces de Plantas/química , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA