Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
Biol Direct ; 19(1): 81, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267140

RESUMEN

BACKGROUND: Limited supply of certain nutrients and deregulation of nucleus pulposus (NP) plays a key role in the pathogenesis of intervertebral disc degeneration (IVDD). However, whether nutrient deprivation-induced cell death, particularly disulfidptosis, contributes to the depletion of NP cells and the development of IVDD, is unknown. METHODS: RNA-seq, single-cell RNA-seq, and Genome-wide DNA methylation datasets of nucleus pulposus tissue were collected for bioinformatic analysis. Predictive models of disulfidptosis related genes in IVDD were constructed by machine learning and their differential expression was analyzed. In addition, we performed cell subsets identification analysis, cell-cell communications analysis, and functional enrichment analysis of key genes in the core subset based on single-cell RNA-seq data of NP tissues isolated from one normal sample and one IVDD sample. Finally, glucose deprivation-induced disulfidptosis in human NP cells (HNPCs) was verified by various cell death inhibitors and disulfidptosis-related molecular markers. RESULTS: We found the disulfidptosis signal was significantly activated in the IVDD group. Using single-cell RNA-seq analysis, we focused on the chondrocytes and found that disulfidptosis-related genes significantly highly expressed in the IVDD C4 chondrocyte subset, which was identified as a new disulfidptosis-associated cell subset. Correlation analysis revealed the negative correlation between SLC7A11 (driving gene of disulfidptosis) and the glucose transporter GLUTs (SLC2A1-4) family genes (suppressing genes of disulfidptosis) in the IVDD group. We also found obvious cell death in HNPC upon glucose starvation, while employment of various cell death inhibitors could not inhibit glucose starvation-induced death in HNPCs. Moreover, the accumulation of disulfide bonds in cytoskeletal proteins was indicated by slowed migration in non-reducible protein blotting experiments. 2-DG, a key disulfidptosis inhibitor, significantly rescued cell death caused by glucose starvation through lowering the NADP+/NADPH ratio. CONCLUSIONS: We validated the occurrence of disulfidptosis in HPNCs and identified a novel disulfidptosis-associated cell subset, followed by experimental verification of disulfidptosis in a glucose-limited context to mimic a fall in nutrient supply during the development disc degeneration. These findings provided new insights into the pathological mechanisms of IVDD and encourage us to explore potential therapeutic targets involved in the regulation of disulfidptosis for the prevention of intervertebral disc degeneration.


Asunto(s)
Glucosa , Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/etiología , Glucosa/metabolismo , Apoptosis
2.
Artículo en Inglés | MEDLINE | ID: mdl-39177299

RESUMEN

Targeting cellular senescence and Senescence Associated Secretory Phenotype (SASP) through autophagy has emerged as a promising intervertebral disc (IVD) degeneration (IDD) treatment strategy in recent years. This study aimed to clarify the role and mechanism of autophagy in preventing IVD SASP. Methods involved in vitro experiments with nucleus pulposus (NP) tissues from normal and IDD patients, as well as an in vivo IDD animal model. GATA4's regulatory role in SASP was validated both in vitro and in vivo, while autophagy modulators were employed to assess their impact on GATA4 and SASP. Transcriptomic sequencing identified Oxidized low-density lipoprotein receptor 1 (OLR1) as a key regulator of autophagy and GATA4. A series of experiments manipulated OLR1 expression to investigate associated effects. Results demonstrated significantly increased senescent NP cells (NPCs) and compromised autophagy in IDD patients and animal models, with SASP closely linked to IDD progression. The aged disc milieu impeded autophagic GATA4 degradation, leading to elevated SASP expression in senescent NPCs. Restoring autophagy reversed senescence by degrading GATA4, hence disrupting the SASP cascade. Moreover, OLR1 was identified for its regulation of autophagy and GATA4 in senescent NPCs. Silencing OLR1 enhanced autophagic activity, suppressing GATA4-induced senescence and SASP expression in senescent NPCs. In conclusion, OLR1 was found to control autophagy-GATA4 and SASP, with targeted OLR1 inhibition holding promise in alleviating GATA4-induced senescence and SASP expression while delaying extracellular matrix degradation, offering a novel therapeutic approach for IDD management.

3.
J Orthop Surg Res ; 19(1): 421, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034400

RESUMEN

BACKGROUND: Cellular senescence features irreversible growth arrest and secretion of multiple proinflammatory cytokines. Cyclic GMP-AMP synthase (cGAS) detects DNA damage and activates the DNA-sensing pathway, resulting in the upregulation of inflammatory genes and induction of cellular senescence. This study aimed to investigate the effect of cGAS in regulating senescence of nucleus pulposus (NP) cells under inflammatory microenvironment. METHODS: The expression of cGAS was evaluated by immunohistochemical staining in rat intervertebral disc (IVD) degeneration model induced by annulus stabbing. NP cells were harvested from rat lumbar IVD and cultured with 10ng/ml IL-1ß for 48 h to induce premature senescence. cGAS was silenced by cGAS specific siRNA in NP cells and cultured with IL-1ß. Cellular senescence was evaluated by senescence-associated beta-galactosidase (SA-ß-gal) staining and flow cytometry. The expression of senescence-associated secretory phenotype including IL-6, IL-8, and TNF-a was evaluated by ELISA and western blotting. RESULTS: cGAS was detected in rat NP cells in cytoplasm and the expression was significantly increased in degenerated IVD. Culturing in 10ng/ml IL-1ß for 48 h induced cellular senescence in NP cells with attenuation of G1-S phase transition. In senescent NP cells the expression of cGAS, p53, p16, NF-kB, IL-6, IL-8, TNF-α was significantly increased while aggrecan and collagen type II was reduced than in normal NP cells. In NP cells with silenced cGAS, the expression of p53, p16, NF-kB, IL-6, IL-8, and TNF-α was reduced in inflammatory culturing with IL-1ß. CONCLUSION: cGAS was increased by NP cells in degenerated IVD promoting cellular senescence and senescent inflammatory phenotypes. Targeting cGAS may alleviate IVD degeneration by reducing NP cell senescence.


Asunto(s)
Senescencia Celular , Degeneración del Disco Intervertebral , Nucleotidiltransferasas , Núcleo Pulposo , Ratas Sprague-Dawley , Senescencia Celular/fisiología , Animales , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Células Cultivadas , Ratas , Masculino , Inflamación/metabolismo , Inflamación/patología , Interleucina-1beta/metabolismo
4.
Aging (Albany NY) ; 16(13): 10868-10881, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38949514

RESUMEN

As a common disease, cervical spondylosis (CS) results from the degeneration of the cervical intervertebral disc. However, there are still no effective clinical strategies for the treatment of this disease. Needle-scalpel (Ns), a therapy guided by traditional Chinese medicine theory, alleviates intervertebral disc degradation and is widely used in the clinic to treat CS. Stromal cell-derived factor-1 (SDF-1) and its receptor CXC receptor 4 (CXCR4) in nucleus pulposus cells play an important role in CS onset and development. This study aimed to explore whether Ns can relieve pain and regulate the SDF-1/CXCR4 axis in nucleus pulposus cells to inhibit apoptosis, thereby delaying cervical intervertebral disc degradation in a rat model of CS. It was found that the Ns-treated groups exhibited higher mechanical allodynia scores than the model group, and H&E staining, MRI, and scanning electron microscopy revealed that Ns therapy inhibited intervertebral disc degeneration. Additionally, Ns therapy significantly inhibited increases in the RNA and protein expression levels of SDF-1 and CXCR4. Furthermore, these treatments alleviated the apoptosis of nucleus pulposus cells, which manifested as a decline in the proportion of apoptotic nucleus pulposus cells and inhibition of the decrease in the levels of Bcl-2/Bax. These findings indicated that Ns mitigated CS-induced pain, inhibited the apoptosis of nucleus pulposus cells, and alleviated intervertebral disc degeneration in CS rats. These effects may be mediated by specifically regulating the SDF-1/CXCR4 signaling axis. Based on these findings, we conclude that Ns might serve as a promising therapy for the treatment of CS.


Asunto(s)
Apoptosis , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Degeneración del Disco Intervertebral , Núcleo Pulposo , Ratas Sprague-Dawley , Receptores CXCR4 , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Quimiocina CXCL12/metabolismo , Apoptosis/efectos de los fármacos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Ratas , Masculino , Vértebras Cervicales , Transducción de Señal/efectos de los fármacos , Espondilosis/metabolismo , Espondilosis/patología
5.
Mol Ther ; 32(8): 2563-2583, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38879755

RESUMEN

The extensive degeneration of functional somatic cells and the depletion of endogenous stem/progenitor populations present significant challenges to tissue regeneration in degenerative diseases. Currently, a cellular reprogramming approach enabling directly generating corresponding progenitor populations from degenerative somatic cells remains elusive. The present study focused on intervertebral disc degeneration (IVDD) and identified a three-factor combination (OCT4, FOXA2, TBXT [OFT]) that could induce the dedifferentiation-like reprogramming of degenerative nucleus pulposus cells (dNPCs) toward induced notochordal-like cells (iNCs). Single-cell transcriptomics dissected the transitions of cell identity during reprogramming. Further, OCT4 was found to directly interact with bromodomain PHD-finger transcription factor to remodel the chromatin during the early phases, which was crucial for initiating this dedifferentiation-like reprogramming. In rat models, intradiscal injection of adeno-associated virus carrying OFT generated iNCs from in situ dNPCs and reversed IVDD. These results collectively present a proof-of-concept for dedifferentiation-like reprogramming of degenerated somatic cells into corresponding progenitors through the development of a factor-based strategy, providing a promising approach for regeneration in degenerative disc diseases.


Asunto(s)
Desdiferenciación Celular , Reprogramación Celular , Degeneración del Disco Intervertebral , Notocorda , Núcleo Pulposo , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citología , Núcleo Pulposo/patología , Animales , Reprogramación Celular/genética , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/metabolismo , Ratas , Notocorda/metabolismo , Notocorda/citología , Humanos , Modelos Animales de Enfermedad , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Análisis de la Célula Individual , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Células Cultivadas
6.
J Inflamm Res ; 17: 3825-3838, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903877

RESUMEN

Background: Intervertebral disc degeneration (IDD) underlies the pathogenesis of degenerative diseases of the spine; however, its exact molecular mechanism is unclear. Purpose: To explore the molecular mechanism of mechanical pressure (MP)-induced IDD and to assess the role and mechanism of Rosuvastatin (RSV) inhibits MP-induced IDD. Methods: SD rat nucleus pulposus cells (NPCs) were cultured in vitro and an apoptosis model of NPCs was constructed using MP. Proliferative activity, reactive oxygen species content, apoptosis, and wound healing were detected in each group of NPCs, respectively. The expression of relevant proteins was detected by qPCR and Western Blot techniques. 18 SD rats were randomly divided into control, pressure and RSV groups. Elisa, qPCR, Western Blot and immunohistochemical staining techniques were used to detect changes in the content of related proteins in the intervertebral discs of each group. HE staining and Modified Saffron-O and Fast Green Stain Kit were used to assess IDD in each group. Results: MP treatment at 1.0 MPa could significantly induce apoptosis of NPCs after 24 h. MP could significantly inhibit the proliferative activity and wound healing ability of NPCs, and increase the intracellular reactive oxygen species content and apoptosis rate; pretreatment with RSV could significantly activate the Nrf2/HO-1 signaling pathway and reverse the cellular damage caused by MP; when inhibit the Nrf2/HO-1 signaling pathway activation, the protective effect of RSV was reversed. In vivo MP could significantly increase the content of inflammatory factors within the IVD and promote the degradation of extracellular matrix, leading to IDD. When the intervention of RSV was employed, it could significantly activate the Nrf2/HO-1 signaling pathway and improve the above results. Conclusion: RSV may inhibit MP-induced NPCs damage and IDD by activating the Nrf2/HO-1 signaling pathway.

7.
Curr Med Chem ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38831674

RESUMEN

Intervertebral disc degeneration (IDD) is a common musculoskeletal system disease, which is one of the most important causes of low back pain. Despite the high prevalence of IDD, current treatments are limited to relieving symptoms, and there are no effective therapeutic agents that can block or reverse the progression of IDD. Oxidative stress, the result of an imbalance between the production of reactive oxygen species (ROS) and clearance by the antioxidant defense system, plays an important role in the progression of IDD. Polyphenols are antioxidant compounds that can inhibit ROS production, which can scavenge free radicals, reduce hydrogen peroxide production, and inhibit lipid oxidation in nucleus pulposus (NP) cells and IDD animal models. In this review, we discussed the antioxidant effects of polyphenols and their regulatory role in different molecular pathways associated with the pathogenesis of IDD, as well as the limitations and future prospects of polyphenols as a potential treatment of IDD.

8.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119769, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38838859

RESUMEN

OBJECTIVE: Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain (LBP). ß-arrestin 1 (ARRB1) is a multifunctional protein that regulates numerous pathological processes. The aim of this study was to investigate the role of ARRB1 in IVDD. METHODS: The expression of ARRB1 in nucleus pulposus (NP) of rats with IVDD was assayed. Next, rat nucleus pulposus cells (NPCs) were infected with lentiviruses containing shArrb1 (LV-shArrb1) and overexpressing Arrb1 (LV-oeArrb1). The roles of Arrb1 in serum-deprived NPCs were investigated by measuring apoptosis, extracellular matrix degradation, and autophagic flux. For experiments in vivo, LV-oeArrb1 lentivirus was injected into the NP tissues of IVDD rats to evaluate the effects of Arrb1 overexpression on NP. RESULTS: In the NP tissues of IVDD rats, ARRB1 and cleaved caspase-3 expression increased, and the ratio of LC3II/LC3I protein expression was upregulated. Arrb1 knockdown aggravated extracellular matrix degradation, cellular apoptosis, and impairment of autophagic flux in rat NPCs under serum-deprived conditions, whereas Arrb1 overexpression significantly reversed these effects. ARRB1 interacted with Beclin 1, and Arrb1 knockdown suppressed the formation of the Beclin1-PIK3C3 core complex. The autophagy inhibitor 3-methyladenine (3-MA) offset the protective effects of Arrb1 overexpression in serum-deprived NPCs. Furthermore, Arrb1 overexpression inhibited apoptosis and extracellular matrix degradation, promoted autophagy in NP, and delayed the development of IVDD in rats. CONCLUSION: ARRB1 prevents extracellular matrix degradation and apoptosis of NPCs by upregulating autophagy and ameliorating IVDD progression, presenting an innovative strategy for the treatment of IVDD.


Asunto(s)
Apoptosis , Autofagia , Matriz Extracelular , Degeneración del Disco Intervertebral , Núcleo Pulposo , beta-Arrestina 1 , Animales , Masculino , Ratas , Apoptosis/genética , Autofagia/genética , beta-Arrestina 1/metabolismo , beta-Arrestina 1/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Ratas Sprague-Dawley
9.
J Inflamm Res ; 17: 2959-2975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764497

RESUMEN

Background: Intervertebral disc degeneration (IDD) is the leading cause of low back pain (LBP). The mechanism of IDD development and progression is not fully understood. Peripheral biomarkers are increasingly vital non-radioactive methods in early detection and diagnosis for IDD. Nevertheless, less attention has been paid to the role of mitophagy genes in the progress of IDD. This study aimed to identify the mitophagy disease-causing genes in the process of IDD and mitophagy diagnostic biomarkers for IDD. Methods: Mitophagy-related differentially expressed genes (MRDEGs) related to IDD were investigated by analyzing the microarray datasets of IDD cases from GEO, PathCards and Molecular Signatures Databases. We used R software, WGCNA, PPI, mRNA-miRNA, mRNA-TF, GO, KEGG, GSEA, GSVA and Cytoscape to analyze and visualize the data. We further used ssGSEA for immunoinfiltration analysis to obtain different immune cell infiltration. LASSO model was developed to screen for genes that met the diagnostic gene model requirements. Finally, qRT-PCR, Western blotting and HE were used to verify hub genes and their expression from clinical IDD samples. Results: We identified 14 MRDEGs and 12 hub genes. GO, KEGG, GSEA and GSVA analyses demonstrated that hub genes were critical for the development of IDD. LASSO diagnostic model consisted of six hub genes, among which SQSTM1, ATG7 and OPTN were significantly different between the two IDD disease subtypes. At the same time, SQSTM1 also had a high correlation with immune characteristic subtypes. The results of qRT-PCR and Western blotting also indicated that these genes were significantly differentially expressed in nucleus pulposus cells (NPCs) of the IDD group. Conclusion: We explored an association between MRDEGs-associated signature in IDD and validated that hub genes like SQSTM1 might serve as biomarkers for diagnostic and therapeutic targets for IDD. Meanwhile, this study can provide new insights into the functional characteristics and mechanism of mitophagy in the development of IDD.

10.
Int Immunopharmacol ; 134: 112161, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728878

RESUMEN

Intervertebral disc degeneration (IVDD) is a leading cause of degenerative spinal disorders, involving complex biological processes. This study investigates the role of the kallikrein-kinin system (KKS) in IVDD, focusing on the protective effects of bradykinin (BK) on nucleus pulposus cells (NPCs) under oxidative stress. Clinical specimens were collected, and experiments were conducted using human and rat primary NPCs to elucidate BK's impact on tert-butyl hydroperoxide (TBHP)-induced oxidative stress and damage. The results demonstrate that BK significantly inhibits TBHP-induced NPC apoptosis and restores mitochondrial function. Further analysis reveals that this protective effect is mediated through the BK receptor 2 (B2R) and its downstream PI3K/AKT pathway. Additionally, BK/PLGA sustained-release microspheres were developed and validated in a rat model, highlighting their potential therapeutic efficacy for IVDD. Overall, this study sheds light on the crucial role of the KKS in IVDD pathogenesis and suggests targeting the B2R as a promising therapeutic strategy to delay IVDD progression and promote disc regeneration.


Asunto(s)
Apoptosis , Bradiquinina , Degeneración del Disco Intervertebral , Núcleo Pulposo , Estrés Oxidativo , Ratas Sprague-Dawley , terc-Butilhidroperóxido , Animales , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología , Núcleo Pulposo/metabolismo , terc-Butilhidroperóxido/toxicidad , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Humanos , Masculino , Bradiquinina/farmacología , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratas , Células Cultivadas , Receptor de Bradiquinina B2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Femenino , Microesferas , Transducción de Señal/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad
11.
IUBMB Life ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721892

RESUMEN

Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-ß-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1ß-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/ß-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1ß-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/ß-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.

12.
World Neurosurg ; 188: e1-e17, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782255

RESUMEN

BACKGROUND: Nucleus pulposus cells survive in a hypoxic, acidic, nutrient-poor, and hypotonic microenvironment. Consequently, they maintain low proliferation and undergo autophagy to protect themselves from cellular stress. Therefore, we aimed to identify autophagy-related biomarkers involved in intervertebral disc degeneration pathogenesis. METHODS: Autophagy-related differentially expressed genes were derived from the intersection between the public GSE147383 microarray data set to identify differentially expressed genes and online databases to identify autophagy-related genes. Furthermore, we assessed their biological functions with gene annotation and enrichment analysis in the Metscape portal. Then, the STRING database and Cytoscape software allowed inferring a protein-protein interaction (PPI) network and identifying hub genes. In addition, to predict transcription factors that may regulate the hub genes, we used the GeneMANIA website. Finally, the competing endogenous RNA prediction tools and Cytoscape were also used to construct an mRNA-miRNA-lncRNA network. RESULTS: A total of 123 autophagy-related differentially expressed genes were identified, they were mainly involved in phosphoinositide 3-kinase-Akt signaling, autophagy animal, and apoptosis pathways. Nine were identified as hub genes (PTEN, MYC, CTNNB1, JUN, BECN1, ERBB2, FOXO3, ATM, and FN1) and 36 transcription factors were associated with them. Finally, an autophagy-associated competing endogenous RNA network was constructed based on the 9 hub genes. CONCLUSIONS: Nine hub genes were identified and a network of competing endogenous RNA associated with autophagy was established. They can be used as autophagy-related biomarkers of intervertebral disc degeneration and for further exploration.


Asunto(s)
Autofagia , Degeneración del Disco Intervertebral , Degeneración del Disco Intervertebral/genética , Autofagia/genética , Autofagia/fisiología , Humanos , Mapas de Interacción de Proteínas/genética , Redes Reguladoras de Genes/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Análisis por Micromatrices , Perfilación de la Expresión Génica/métodos , MicroARNs/genética
13.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725841

RESUMEN

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Asunto(s)
Autofagia , Senescencia Celular , Degeneración del Disco Intervertebral , Proteínas de la Membrana , Núcleo Pulposo , Animales , Humanos , Masculino , Ratones , Ratas , Autofagia/fisiología , Senescencia Celular/fisiología , Degeneración del Disco Intervertebral/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Núcleo Pulposo/metabolismo , Ratas Sprague-Dawley
14.
Mol Med Rep ; 29(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38577946

RESUMEN

Following the publication of this paper, the authors requested that the paper be retracted, specifically on account of deficiencies that were identified both in the documentation of patient records and in written consent pertaining to the data presented in Fig. 1. After having considered the authors' request, the Editor of Molecular Medicine Reports has agreed that this paper should be retracted from the Journal. All the authors are in agreement with the decision to retract this paper. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 24: 724, 2021; DOI: 10.3892/mmr.2021.12363].

15.
J Physiol ; 602(7): 1341-1369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38544414

RESUMEN

Intervertebral disc degeneration (IDD) poses a significant health burden, necessitating a deeper understanding of its molecular underpinnings. Transcriptomic analysis reveals 485 differentially expressed genes (DEGs) associated with IDD, underscoring the importance of immune regulation. Weighted gene co-expression network analysis (WGCNA) identifies a yellow module strongly correlated with IDD, intersecting with 197 DEGs. Protein-protein interaction (PPI) analysis identifies ITGAX, MMP9 and FCGR2A as hub genes, predominantly expressed in macrophages. Functional validation through in vitro and in vivo experiments demonstrates the pivotal role of FCGR2A in macrophage polarization and IDD progression. Mechanistically, FCGR2A knockdown suppresses M1 macrophage polarization and NF-κB phosphorylation while enhancing M2 polarization and STAT3 activation, leading to ameliorated IDD in animal models. This study sheds light on the regulatory function of FCGR2A in macrophage polarization, offering novel insights for IDD intervention strategies. KEY POINTS: This study unveils the role of FCGR2A in intervertebral disc (IVD) degeneration (IDD). FCGR2A knockdown mitigates IDD in cellular and animal models. Single-cell RNA-sequencing uncovers diverse macrophage subpopulations in degenerated IVDs. This study reveals the molecular mechanism of FCGR2A in regulating macrophage polarization. This study confirms the role of the NF-κB/STAT3 pathway in regulating macrophage polarization in IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Receptores de IgG , Animales , Perfilación de la Expresión Génica , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Macrófagos , FN-kappa B/genética , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratas , Receptores de IgG/metabolismo
16.
J Neurol Surg B Skull Base ; 85(2): 161-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38449582

RESUMEN

Objective Interaction of tumor cells with the surrounding environment is essential for tumor growth and progression that eventually leads to metastasis. Growing evidence shows that extracellular vesicles also known as exosomes play a crucial role in signaling between the tumor and its microenvironment. Tumor-derived exosomes have generally protumorigenic effects such as metastasis, hypoxia, angiogenesis, and epithelial-mesenchymal transition. Methods In this study, exosomes were isolated from a chordoma cell line, MUG-Chor1, and characterized subsequently. The number of exosomes was determined and introduced into the healthy nucleus pulposus (NP) cells for 140 days. The protumorigenic effects of a chordoma cell line-derived exosomes that initiate the tumorigenesis on NP cells were investigated. The impact of tumor-derived exosomes on various cellular events including cell cycle, migration, proliferation, apoptosis, and viability has been studied by treating NP cells with chordoma cell-line-derived exosomes cells. Results Upon treatment with exosomes, the NP cells not only gained a chordoma-like morphology but also molecular characteristics such as alterations in the levels of certain gene expressions. The migratory and angiogenic capabilities of NP cells increased after treatment with chordoma-derived exosomes. Conclusion Based on our findings, we can conclude that exosomes carry information from tumor cells and may exert tumorigenic effects on nontumorous cells.

17.
In Vitro Cell Dev Biol Anim ; 60(3): 287-299, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38485818

RESUMEN

The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1ß-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1ß, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1ß to simulate IVDD environment and divided into the control group, IL-1ß group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1ß, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1ß-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1ß-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.


Asunto(s)
Ginsenósidos , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animales , Ratas , Agrecanos/genética , Apoptosis , Colágeno/farmacología , Inflamación/patología , Interleucina-6/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Metaloproteinasa 3 de la Matriz/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
18.
Adv Drug Deliv Rev ; 207: 115214, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38395361

RESUMEN

Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.


Asunto(s)
Degeneración del Disco Intervertebral , MicroARNs , Adulto , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/metabolismo , Nanomedicina , Transducción de Señal
19.
J Cell Physiol ; 239(5): e31219, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38345407

RESUMEN

Mechanical environment worsening is an important predisposing factor that accelerates intervertebral disc degeneration (IDD), but its specific regulatory mechanisms remain unclear. In this study, we reveal the molecular mechanisms of WTAP/YTHDF2-mediated m6A modification in abnormal stress-induced intervertebral disc (IVD) matrix degradation. WTAP expression in human nucleus pulposus cells was elevated under tension. Similarly, high WTAP expression was detected in severe degenerated human and rat nucleus pulposus tissues. Functionally, WTAP was found to increase the TIMP3 transcript methylation level under tension, resulting in YTHDF2 recognition, binding, and induction of its degradation. Reduction in TIMP3 caused increases in active matrix metalloproteinases, ultimately inducing extracellular matrix degradation in nucleus pulposus cells. Macroscopically, this promotes IDD. Additionally, in vitro and in vivo inhibition of WTAP expression or TIMP3 overexpression significantly increased stress resistance in the nucleus pulposus, thereby alleviating IDD. Our results show that abnormal stress disrupts IVD matrix stability through WTAP/YTHDF2-dependent TIMP3 m6A modification.


Asunto(s)
Adenosina , Proteínas de Ciclo Celular , Degeneración del Disco Intervertebral , Núcleo Pulposo , Factores de Empalme de ARN , Proteínas de Unión al ARN , Estrés Mecánico , Inhibidor Tisular de Metaloproteinasa-3 , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Matriz Extracelular/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Ratas Sprague-Dawley , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inhibidor Tisular de Metaloproteinasa-3/genética , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Adenosina/análogos & derivados , Factores de Empalme de ARN/metabolismo , Proteínas de Ciclo Celular/metabolismo
20.
Aging (Albany NY) ; 16(1): 685-700, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38217540

RESUMEN

BACKGROUND: Extracellular matrix metabolism dysregulation in nucleus pulposus (NP) cells represents a crucial pathophysiological feature of intervertebral disc degeneration (IDD). Our study elucidates the role and mechanism of Testis expressed 11 (TEX11, also called ZIP4) extracellular matrix degradation in the NP. MATERIALS AND METHODS: Interleukin-1ß (IL-1ß) and H2O2 were used to treat NP cells to establish an IDD cell model. Normal NP tissues and NP tissues from IDD patients were harvested. ZIP4 mRNA and protein profiles in NP cells and tissues were examined. Enzyme-linked immunosorbent assay (ELISA) confirmed the profiles of TNF-α, IL-6, MDA, and SOD in NP cells. The alterations of reactive oxygen species (ROS), lactate dehydrogenase (LDH), COX2, iNOS, MMP-3, MMP-13, collagen II, aggrecan, FoxO3a, histone deacetylase 4 (HDAC4), Sirt1 and NF-κB levels in NP cells were determined using different assays. RESULTS: The ZIP4 profile increased in the NP tissues of IDD patients and IL-1ß- or H2O2-treated NP cells. ZIP4 upregulation bolstered inflammation and oxidative stress in NP cells undergoing IL-1ß treatment and exacerbated their extracellular matrix degradation, whereas ZIP4 knockdown produced the opposite outcome. Mechanistically, ZIP4 upregulated HDAC4 and enhanced NF-κB phosphorylation while repressing Sirt1 and FoxO3a phosphorylation levels. HDAC4 knockdown or Sirt1 promotion attenuated the effects mediated by ZIP4 overexpression in NP cells. CONCLUSIONS: ZIP4 upregulation aggravates the extracellular matrix (ECM) degradation of NP cells by mediating inflammation and oxidative stress through the HDAC4-FoxO3a axis.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Masculino , Células Cultivadas , Matriz Extracelular/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Estrés Oxidativo , Proteínas Represoras/metabolismo , Sirtuina 1/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA