Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Transl Anim Sci ; 8: txae126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281312

RESUMEN

The cloning of beef carcasses that grade United States Department of Agriculture (USDA) Prime-yield grade (YG) 1 (P1) has produced a sire that ranked well against high-performing bulls from multiple breeds. An F1 (P1 × P1 - first generation offspring) sire would ideally outperform its high-performing parents. A terminal sire study was conducted comparing progeny of an F1 (P1 × P1) sire (AxG1) against progeny (heifers and steers) of four high-performing sires of varying breeds {P1 (ALPHA); Angus; Simmental; Angus × Simmental}. Production traits included morbidity and mortality frequencies, weaning weight, feedlot arrival weight, and days on feed; carcass traits included frequency of abscessed liver and lung health, quality grade and YG parameters, total carcass value (US$), and carcass value per hundredweight (CWT [45.4 kg]; US$). A completely randomized experimental design was used; data were analyzed using a mixed model with a fixed effect of sire and random effects of harvest date, sex, and pen. AxG1 sired heifers had the highest (P < 0.01) marbling score, the highest (P < 0.01) carcass value per CWT, and numerically had the lowest calculated YG and highest frequency of YG one carcass. Steers sired by AxG1 had the least (P = 0.05) backfat, lowest (P < 0.01) calculated YG, highest (P < 0.01) marbling score, highest (P < 0.01) frequency of USDA Prime carcasses, the greatest (P < 0.03) total carcass value, and greatest (P < 0.01) carcass value per CWT. Collectively, AxG1 steer and heifer carcasses exhibited the least 12th rib fat thickness and lowest USDA YG in addition to the largest longissimus muscle area, highest marbling score, and greatest frequency of USDA Prime. These data suggest that AxG1 performed comparably to other high-performing industry terminal sires in carcass quality and YG outcomes.

2.
Reprod Domest Anim ; 59(9): e14632, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279335

RESUMEN

Handmade cloning (HMC) has a higher yield and is relatively less difficult to operate compared to traditional micromanipulation cloning. Yet, there are few reports on handmade cloning in sheep. Therefore, this study investigates the key nodes such as AC and DC voltage, denucleation method and fusion method in sheep handmade cloning. In addition, it compares the effects of fibroblasts (FC) and umbilical cord mesenchymal stem cells (UC-MSCs) of different states as donors on the development of HMC embryos. Furthermore, the effect of different freezing solutions on the survival rate of frozen blastocysts without zona pellucida was also investigated. The results indicate that an AC voltage of 150 V/cm and a DC voltage of 1800 V/cm significantly enhanced the fusion and blastocyst rates (p < .01). The blastocyst rate achieved with umbilical cord MSCs as nucleus donors was significantly higher (40.3%) than that achieved with fibroblasts and differentiated umbilical cord MSCs (21.5%, 22.5%) (p < .01). The highest survival rate was achieved using 20% DMSO + 20% EG for freezing without zona pellucida. In conclusion, the most efficient and pregnant ovine HMC cloning method using 150 V/cm AC, 1800 V/cm DC, knife-cut denucleation, two-step fusion and the use of UC-MSCs as nucleus donors resulted in the highest overall efficiency and pregnancy after transplantation.


Asunto(s)
Blastocisto , Clonación de Organismos , Fibroblastos , Células Madre Mesenquimatosas , Técnicas de Transferencia Nuclear , Cordón Umbilical , Animales , Cordón Umbilical/citología , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Femenino , Embarazo , Técnicas de Transferencia Nuclear/veterinaria , Ovinos , Núcleo Celular , Criopreservación/veterinaria , Criopreservación/métodos , Oveja Doméstica , Técnicas de Cultivo de Embriones/veterinaria
3.
Theriogenology ; 230: 115-120, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39293173

RESUMEN

We aimed to establish efficient donor cells to produce piglets by somatic cell nuclear transfer (SCNT) of the endangered Vietnamese I pig. In Experiment 1, we assessed the effects of cell passages on the in vitro development of SCNT embryos. Cells with five and six passages showed significantly cleaved and blastocyst formation rates (86.72 and 86.64; 35.68 and 35.51, respectively, P < 0.05). The highest average total cell number per blastocyst was observed in groups of cells with five and six passages (50.45 and 50.18, respectively). Experiment 2 was performed to assess the sex of donor cells on the subsequent development of SCNT embryos. There was no significant difference in the cleaved and blastocyst formation rates, and the average total cell between female and male groups (86.51 % vs 86.94 % and 35.31 % vs 35.08 %, 50.29 % vs 50.67 %, respectively, P > 0.05). Experiment 3 was performed to assess the effect of cell lines on the development of SCNT embryos. Our results showed no significant difference in the success rate of fibroblast nuclear transfer into recipient oocytes, the cleaved and blastocyst formation rates, and the average total cell number per blastocyst among the cell lines 6004, 9154, 9155, 9156 and 9157 (P > 0.05). Experiment 4 was performed to assess the ability of SCNT embryos to induce pregnancy and to develop term. SCNT embryos were produced from I fibroblast cells established based on the results of Experiments 1, 2 and 3. Transfer of blastocyst stage embryos into 19 recipients (100-120 embryos in each) resulted in 14 pregnancies, in which 8 pregnant females terminated on Day 22-42 and 6 others produced 20 cloned piglets from donor cells of a female pig but 5 piglets died before birth and 15 healthy cloned piglets. However, 3 out of 15 healthy piglets died of unknown causes within 24h of birth and 3 out of 15 healthy piglets died at 3-5 days of age due to diarrhoea, 9 out of 15 healthy piglets are now 3 months of age. Finally, we established a protocol for the donor cell production which enabled the production of the endangered I pig embryos by SCNT and maximized blastocyst production rate by more than 35 % and pregnant rate after the transfer of cloned I pig embryos to recipients at 73.68 % for the first time in Vietnam.

4.
J Anim Sci Technol ; 66(4): 726-739, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39165747

RESUMEN

This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

5.
Theriogenology ; 227: 102-111, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047406

RESUMEN

Somatic cell nuclear transfer (SCNT) is one of the primary methods for production of genetically engineered sheep, which allows for gene editing or transgene introduction in somatic cells. The use of SCNT eliminates the risk of genetic mosaicism in embryos and animals that is commonly observed after zygote micromanipulations. This retrospective analysis of SCNT in sheep performed at Utah State University, spanning from 2016 to 2021, examined parameters that may impact pregnancy and full-term development, including donor oocytes (donor age), donor cell lines, SCNT parameters (time of oocyte activation following SCNT, number of transferred embryos, in vitro maturation and culture conditions), and recipients (surgical number and ovulatory status), as well as factors that may correlate with large offspring syndrome or abnormal offspring syndrome (LOS/AOS) in the fetuses and lambs. Our findings indicated that compared to prepubertal oocytes, the SCNT embryos produced from adult sheep oocytes had comparable in vitro maturation rates, pregnancy and full-term development rates, as well as SCNT efficiency. In addition, earlier activation time of SCNT embryos (e.g. 24-26 h post maturation) was correlated to the early pregnancy loss rate, full-term rate, and SCNT efficiency. Compared to our standard serum-containing medium, commercial serum-free culture medium showed a positive correlation with the full-term development of sheep SCNT embryos. Transferring 15-30 embryos per recipient resulted in consistently good pregnancy rates. Surgical numbers and ovulatory status (having at least one follicle between 6 and 12 mm in size or a corpus hemorrhagicum (CH)) of recipients did not affect pregnancy and full-term development rates. In summary, this retrospective analysis identified parameters for improving pregnancy and full-term development of SCNT embryos in sheep.


Asunto(s)
Técnicas de Transferencia Nuclear , Animales , Técnicas de Transferencia Nuclear/veterinaria , Ovinos/embriología , Estudios Retrospectivos , Femenino , Embarazo , Oocitos/fisiología , Transferencia de Embrión/veterinaria , Transferencia de Embrión/métodos , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Cultivo de Embriones/veterinaria
6.
Theriogenology ; 226: 378-386, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972169

RESUMEN

METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.


Asunto(s)
Clonación de Organismos , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Metiltransferasas , Animales , Porcinos/embriología , Porcinos/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear/veterinaria , Adenosina/análogos & derivados , Adenosina/metabolismo , Metilación , Técnicas de Silenciamiento del Gen , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética
7.
Vet Res Commun ; 48(4): 2457-2475, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38829518

RESUMEN

Somatic cell nuclear transfer (SCNT) is a very important reproductive technology with many diverse applications, such as fast multiplication of elite animals, the production of transgenic animals and embryonic stem (ES) cells. However, low cloning efficiency, a low live birth rate and the abnormally high incidence of abnormalities in the offspring born are attributed to incomplete or aberrant nuclear reprogramming. In SCNT embryos, the aberrant expression pattern of the genes throughout embryonic development is responsible for the incomplete nuclear reprogramming. The present study was carried out to identify the differential gene expression (DEGs) profile and molecular pathways of the SCNT and IVF embryos at different developmental stages (2 cell, 8 cell and blastocyst stages). In the present study, 1164 (2 cell), 1004 (8 cell) and 530 (blastocyst stage) DEGs were identified in the SCNT embryos as compared to IVF embryos. In addition, several genes such as ZEB1, GDF1, HSF5, PDE3B, VIM, TNNC, HSD3B1, TAGLN, ITGA4 and AGMAT were affecting the development of SCNT embryos as compared to IVF embryos. Further, Gene Ontology (GO) and molecular pathways analysis suggested, SCNT embryos exhibit variations compared to their IVF counterparts and affected the development of embryos throughout the different developmental stages. Apart from this, q-PCR analysis of the GDF1, TMEM114, and IGSF22 genes were utilized to validate the RNA-seq data. These findings contribute valuable insights about the different genes and molecular pathways underlying SCNT embryo development and offer crucial information for improving SCNT efficiency.


Asunto(s)
Búfalos , Fertilización In Vitro , Técnicas de Transferencia Nuclear , Transcriptoma , Animales , Técnicas de Transferencia Nuclear/veterinaria , Fertilización In Vitro/veterinaria , Búfalos/embriología , Búfalos/genética , Embrión de Mamíferos/metabolismo , Femenino , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica/veterinaria
8.
Stem Cell Reports ; 19(6): 906-921, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38729154

RESUMEN

Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Técnicas de Transferencia Nuclear , Animales , Histonas/metabolismo , Ratones , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Metilación , Clonación de Organismos/métodos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Ácidos Hidroxámicos/farmacología , Femenino , Inhibidores de Histona Desacetilasas/farmacología
9.
Theriogenology ; 225: 1-8, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781848

RESUMEN

An established technology to create cloned animals is through the use of somatic cell nuclear transfer (SCNT), in which reprogramming the somatic cell nucleus to a totipotent state by enucleated oocyte cytoplasm is a necessary process, including telomere length reprogramming. The limitation of this technology; however, is that the live birth rate of offspring produced through SCNT is significantly lower than that of IVF. Whether and how telomere length play a role in the development of cloned animals is not well understood. Only a few studies have evaluated this association in cloned mice, and fewer still in cloned cows. In this study, we investigated the difference in telomere length as well as the abundance of some selected molecules between newborn deceased cloned calves and normal cows of different ages either produced by SCNT or via natural conception, in order to evaluate the association between telomere length and abnormal development of cloned cows. The absolute telomere length and relative mitochondrial DNA (mtDNA) copy number were determined by real-time quantitative PCR (qPCR), telomere related gene abundance by reverse-transcription quantitative PCR (RT-qPCR), and senescence-associated ß-galactosidase (SA-ß-gal) expression by SA-ß-gal staining. The results demonstrate that the newborn deceased SCNT calves had significantly shortened telomere lengths compared to newborn naturally conceived calves and newborn normal SCNT calves. Significantly lower mtDNA copy number, and significantly lower relative abundance of LMNB1 and TERT, higher relative abundance of CDKN1A, and aberrant SA-ß-gal expression were observed in the newborn deceased SCNT calves, consistent with the change in telomere length. These results demonstrate that abnormal telomere shortening, lower mtDNA copy number and abnormal abundance of related genes were specific to newborn deceased SCNT calves, suggesting that abnormally short telomere length may be associated with abnormal development in the cloned calves.


Asunto(s)
Animales Recién Nacidos , Clonación de Organismos , Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Telómero , Animales , Clonación de Organismos/veterinaria , Bovinos/genética , ADN Mitocondrial/genética , Telómero/genética , Técnicas de Transferencia Nuclear/veterinaria , Femenino , Homeostasis del Telómero
10.
Open Biol ; 14(5): 230358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689555

RESUMEN

The nucleolus is the most prominent liquid droplet-like membrane-less organelle in mammalian cells. Unlike the nucleolus in terminally differentiated somatic cells, those in totipotent cells, such as murine zygotes or two-cell embryos, have a unique nucleolar structure known as nucleolus precursor bodies (NPBs). Previously, it was widely accepted that NPBs in zygotes are simply passive repositories of materials that will be gradually used to construct a fully functional nucleolus after zygotic genome activation (ZGA). However, recent research studies have challenged this simplistic view and demonstrated that functions of the NPBs go beyond ribosome biogenesis. In this review, we provide a snapshot of the functions of NPBs in zygotes and early two-cell embryos in mice. We propose that these membrane-less organelles function as a regulatory hub for chromatin organization. On the one hand, NPBs provide the structural platform for centric and pericentric chromatin remodelling. On the other hand, the dynamic changes in nucleolar structure control the release of the pioneer factors (i.e. double homeobox (Dux)). It appears that during transition from totipotency to pluripotency, decline of totipotency and initiation of fully functional nucleolus formation are not independent events but are interconnected. Consequently, it is reasonable to hypothesize that dissecting more unknown functions of NPBs may shed more light on the enigmas of early embryonic development and may ultimately provide novel approaches to improve reprogramming efficiency.


Asunto(s)
Nucléolo Celular , Cromatina , Desarrollo Embrionario , Animales , Humanos , Ratones , Nucléolo Celular/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Cigoto/metabolismo , Cigoto/citología
11.
Biol Res ; 57(1): 35, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38812008

RESUMEN

BACKGROUND: Genetically modified pigs are considered ideal models for studying human diseases and potential sources for xenotransplantation research. However, the somatic cell nuclear transfer (SCNT) technique utilized to generate these cloned pig models has low efficiency, and fetal development is limited due to placental abnormalities. RESULTS: In this study, we unprecedentedly established putative porcine trophoblast stem cells (TSCs) using SCNT and in vitro-fertilized (IVF) blastocysts through the activation of Wing-less/Integrated (Wnt) and epidermal growth factor (EGF) pathways, inhibition of transforming growth factor-ß (TGFß) and Rho-associated protein kinase (ROCK) pathways, and supplementation with ascorbic acid. We also compared the transcripts of putative TSCs originating from SCNT and IVF embryos and their differentiated lineages. A total of 19 porcine TSCs exhibiting typical characteristics were established from SCNT and IVF blastocysts (TSCsNT and TSCsIVF). Compared with the TSCsIVF, TSCsNT showed distinct expression patterns suggesting unique TSCsNT characteristics, including decreased mRNA expression of genes related to apposition, steroid hormone biosynthesis, angiopoiesis, and RNA stability. CONCLUSION: This study provides valuable information and a powerful model for studying the abnormal development and dysfunction of trophoblasts and placentas in cloned pigs.


Asunto(s)
Blastocisto , Técnicas de Transferencia Nuclear , Trofoblastos , Animales , Trofoblastos/metabolismo , Porcinos , Diferenciación Celular , Femenino , Células Madre , Fertilización In Vitro/métodos
12.
Cell Rep ; 43(4): 114118, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38619966

RESUMEN

Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.


Asunto(s)
Embrión de Mamíferos , Cigoto , Animales , Ratones , Reprogramación Celular , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias de Ratones/metabolismo , ARN/metabolismo , ARN/genética , Transcripción Genética , Cigoto/metabolismo
13.
Hum Reprod Open ; 2024(1): hoae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425578

RESUMEN

STUDY QUESTION: Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER: PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY: In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION: The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS: Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE: Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 µm versus 73.1 µm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS: PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS: A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.

14.
J Vet Sci ; 25(1): e10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311323

RESUMEN

In livestock industry, there is growing interest in methods to increase the production efficiency of livestock to address food shortages, given the increasing global population. With the advancements in gene engineering technology, it is a valuable tool and has been intensively utilized in research specifically focused on human disease. In historically, this technology has been used with livestock to create human disease models or to produce recombinant proteins from their byproducts. However, in recent years, utilizing gene editing technology, cattle with identified genes related to productivity can be edited, thereby enhancing productivity in response to climate change or specific disease instead of producing recombinant proteins. Furthermore, with the advancement in the efficiency of gene editing, it has become possible to edit multiple genes simultaneously. This cattle breed improvement has been achieved by discovering the genes through the comprehensive analysis of the entire genome of cattle. The cattle industry has been able to address gene bottlenecks that were previously impossible through conventional breeding systems. This review concludes that gene editing is necessary to expand the cattle industry, improving productivity in the future. Additionally, the enhancement of cattle through gene editing is expected to contribute to addressing environmental challenges associated with the cattle industry. Further research and development in gene editing, coupled with genomic analysis technologies, will significantly contribute to solving issues that conventional breeding systems have not been able to address.


Asunto(s)
Edición Génica , Ingeniería Genética , Animales , Bovinos/genética , Humanos , Edición Génica/veterinaria , Ingeniería Genética/métodos , Ingeniería Genética/veterinaria , Cruzamiento , Genoma , Ganado/genética , Proteínas Recombinantes
15.
Cancer Cell Int ; 24(1): 86, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402174

RESUMEN

BACKGROUND: The role of Acyl-CoA dehydrogenase long chain (ACADL) in different tumor types had different inhibiting or promoting effect. However, its role in non-small cell lung cancer (NSCLC) carcinogenicity is not clear. METHOD: In this study, we utilized The Cancer Genome Atlas (TCGA) database to analyze ACADL expression in NSCLC and its correlation with overall survival. Furthermore, we investigated the function of ACADL on cellular proliferation, invasion, colony, apoptosis, cell cycle in vitro with NSCLC cells. Mechanistically, we evaluated the regulatory effect of ACADL expression on its downstream factor yes-associated protein (YAP) by assessing YAP phosphorylation levels and its cellular localization. Finally, we verified the tumorigenic effect of ACADL on NSCLC cells through xenograft experiments in vivo. RESULTS: Compared to adjacent non-cancerous samples, ACADL significantly down-regulated in NSCLC. Overexpression of ACADL, effectively reduced the proliferative, colony, and invasive capabilities of NSCLC cells, while promoting apoptosis and inducing cell cycle arrest. Moreover, ACADL overexpression significantly enhanced YAP phosphorylation and hindered its nuclear translocation. However, the inhibitory effect of the overexpression of ACADL in NSCLC cells mentioned above can be partially counteracted by YAP activator XMU-MP-1 application both in vitro and in vivo. CONCLUSION: The findings suggest that ACADL overexpression could suppress NSCLC development by modulating YAP phosphorylation and limiting its nuclear shift. This role of ACADL-YAP axis provided novel insights into NSCLC carcinogenicity and potential therapeutic strategies.

16.
Theriogenology ; 218: 193-199, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38330863

RESUMEN

The purpose of this study was to compare the efficiency of the production of cloned transgenic Yucatan miniature pigs (YMPs) using two recipient breeds, i.e., YMPs and domestic pigs (DPs), under various embryo transfer conditions. We initially assessed the in vitro developmental competence of embryos obtained via somatic cell nuclear transfer (SCNT) from three different transgenic donor cells. No difference was observed among the three groups regarding developmental competence. Furthermore, the cloning efficiency remained consistent among the three groups after the transfer of the SCNT embryos to each surrogate mother. Subsequently, to compare the efficiency of the production of cloned transgenic YMPs between the two recipient breeds using varying parameters, including ovulation status (preovulation and postovulation), duration of in vitro culture (IVC) (incubated within 24 h and 24-48 h), and the number of transferred SCNT embryos (less than and more than 300), we assessed the pregnancy rates, delivery rates, mean offspring counts, and cloning efficiency. Regarding the ovulation status, YMPs exhibited higher pregnancy rates, delivery rates, and cloning efficiency compared with DPs in both statuses. Moreover, the pregnancy rates, delivery rates, and cloning efficiency were affected by the ovulation status in DPs, but not in YMPs. The comparison of IVC duration between groups revealed that YMPs had higher pregnancy rates vs. DPs in both conditions. SCNT embryos cultured for 24-48 h in YMPs yielded higher delivery rates and cloning efficiency compared with those cultured for less than 24 h in DPs. Finally, the analysis based on the number of transferred SCNT embryos showed that both the pregnancy and delivery rates were higher in YMPs vs. DPs. However, the highest average number of offspring was obtained when more than 300 SCNT embryos were transferred into DPs, whereas the cloning efficiency was higher in YMPs vs. DPs. Our results suggest that YMPs are more suitable recipients than are DPs under various conditions for the production of cloned transgenic YMPs.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Embarazo , Femenino , Porcinos/genética , Animales , Porcinos Enanos/genética , Animales Modificados Genéticamente , Clonación de Organismos/veterinaria , Clonación de Organismos/métodos , Técnicas de Transferencia Nuclear/veterinaria , Transferencia de Embrión/veterinaria , Transferencia de Embrión/métodos
17.
Cell Reprogram ; 26(1): 33-36, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38261417

RESUMEN

A 6-year-old mare, a valuable polo horse, died of complications following postcolic surgery. To preserve its genetics, ear skin samples were collected immediately after death and stored in an equine embryo transfer medium at 4°C for 5 days. After trypsin digestion, monolayer fibroblast cultures were established, but signs of massive bacterial infection were found in all of them. As an ultimate attempt for rescue, rigorously and repeatedly washed cells were individually cultured in all wells of four 96-well dishes. New monolayers were established from the few wells without contamination and used for somatic cell nuclear transfer. Four of the six Day 7 blastocysts derived from 14 reconstructed zygotes were transferred in four naturally cycling mares on Day 5 after ovulation. The embryo transfers resulted in 2 pregnancies, one from a fresh and one from a vitrified blastocyst. The vitrified embryo transfer resulted in a healthy offspring, now 21 months old, genetically and phenotypically identical to the somatic cell donor animal.


Asunto(s)
Descontaminación , Transferencia de Embrión , Embarazo , Animales , Caballos , Femenino , Transferencia de Embrión/veterinaria , Técnicas de Transferencia Nuclear/veterinaria , Blastocisto , Fibroblastos
18.
Cell Rep ; 43(1): 113664, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38194345

RESUMEN

Induced pluripotent stem cells (iPSCs) are the foundation of cell therapy. Differences in gene expression, DNA methylation, and chromatin conformation, which could affect differentiation capacity, have been identified between iPSCs and embryonic stem cells (ESCs). Less is known about whether DNA replication timing, a process linked to both genome regulation and genome stability, is efficiently reprogrammed to the embryonic state. To answer this, we compare genome-wide replication timing between ESCs, iPSCs, and cells reprogrammed by somatic cell nuclear transfer (NT-ESCs). While NT-ESCs replicate their DNA in a manner indistinguishable from ESCs, a subset of iPSCs exhibits delayed replication at heterochromatic regions containing genes downregulated in iPSCs with incompletely reprogrammed DNA methylation. DNA replication delays are not the result of gene expression or DNA methylation aberrations and persist after cells differentiate to neuronal precursors. Thus, DNA replication timing can be resistant to reprogramming and influence the quality of iPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/metabolismo , Reprogramación Celular/genética , Momento de Replicación del ADN , Diferenciación Celular , Metilación de ADN/genética
19.
Mol Hum Reprod ; 29(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38039159

RESUMEN

Nuclear transfer techniques, including spindle chromosome complex (SC) transfer and pronuclear transfer, have been employed to mitigate mitochondrial diseases. Nevertheless, the challenge of mitochondrial DNA (mtDNA) carryover remains unresolved. Previously, we introduced a method for aggregated chromosome (AC) transfer in human subjects, offering a potential solution. However, the subsequent rates of embryonic development have remained unexplored owing to legal limitations in Japan, and animal studies have been hindered by a lack of AC formation in other species. Building upon our success in generating ACs within mouse oocytes via utilization of the phosphodiesterase inhibitor 3-isobutyl 1-methylxanthine (IBMX), this study has established a mouse model for AC transfer. Subsequently, a comparative analysis of embryo development rates and mtDNA carryover between AC transfer and SC transfer was conducted. Additionally, the mitochondrial distribution around SC and AC structures was investigated, revealing that in oocytes at the metaphase II stage, the mitochondria exhibited a relatively concentrated arrangement around the spindle apparatus, while the distribution of mitochondria in AC-formed oocytes appeared to be independent of the AC position. The AC transfer approach produced a marked augmentation in rates of fertilization, embryo cleavage, and blastocyst formation, especially as compared to scenarios without AC transfer in IBMX-treated AC-formed oocytes. No significant disparities in fertilization and embryo development rates were observed between AC and SC transfers. However, relative real-time PCR analyses revealed that the mtDNA carryover for AC transfers was one-tenth and therefore significantly lower than that of SC transfers. This study successfully accomplished nuclear transfers with ACs in mouse oocytes, offering an insight into the potential of AC transfers as a solution to heteroplasmy-related challenges. These findings are promising in terms of future investigation with human oocytes, thus advancing AC transfer as an innovative approach in the field of human nuclear transfer methodology.


Asunto(s)
Cromatina , Mitocondrias , Embarazo , Femenino , Humanos , Animales , Ratones , Cromatina/metabolismo , 1-Metil-3-Isobutilxantina , Mitocondrias/genética , Oocitos/metabolismo , Cromosomas , ADN Mitocondrial/genética
20.
J Anim Sci Technol ; 65(4): 767-778, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37970504

RESUMEN

The aim of the research is to identify that porcine oocytes can function as recipients for interspecies cloning and have the ability to develop to blastocysts. Furthermore each mitochondrial DNA (mtDNA) in interspecises cloned embryos was analyzed. For the study, mouse-porcine and porcine-porcine cloned embryos were produced with mouse fetal fibroblasts (MFF) and porcine fetal fibroblasts (PFF), respectively, introduced as donor cells into enucleated porcine oocytes. The developmental rate and cell numbers of blastocysts between intraspecies porcine-porcine and interspecies mouse-porcine cloned embryos were compared and real-time polymerase chain reaction (PCR) was performed for the estimate of mouse and porcine mtDNA copy number in mouse-porcine cloned embryos at different stages.There was no significant difference in the developmental rate or total blastocyst number between mouse-porcine cloned embryos and porcine-porcine cloned embryos (11.1 ± 0.9%, 25 ± 3.5 vs. 10.1 ± 1.2%, 24 ± 6.3). In mouse-porcine reconstructed embryos, the copy numbers of mouse somatic cell-derived mtDNA decreased between the 1-cell and blastocyst stages, whereas the copy number of porcine oocyte-derived mtDNA significantly increased during this period, as assessed by real-time PCR analysis. In our real-time PCR analysis, we improved the standard curve construction-based method to analyze the level of mtDNA between mouse donor cells and porcine oocytes using the copy number of mouse beta-actin DNA as a standard. Our findings suggest that mouse-porcine cloned embryos have the ability to develop to blastocysts in vitro and exhibit mitochondrial heteroplasmy from the 1-cell to blastocyst stages and the mouse-derived mitochondria can be gradually replaced with those of the porcine oocyte in the early developmental stages of mouse-porcine cloned embryos.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA