Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Metab Brain Dis ; 39(6): 1213-1225, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39066989

RESUMEN

Parkinson's Disease (PD) remains a significant focus of extensive research aimed at developing effective therapeutic strategies. Current treatments primarily target symptom management, with limited success in altering the course of the disease. This shortfall underscores the urgent need for novel therapeutic approaches that can modify the progression of PD.This review concentrates on emerging therapeutic targets poised to address the underlying mechanisms of PD. Highlighted novel and emerging targets include Protein Abelson, Rabphilin-3 A, Colony Stimulating Factor 1-Receptor, and Apelin, each showing promising potential in preclinical and clinical settings for their ability to modulate disease progression. By examining recent advancements and outcomes from trials focusing on these targets, the review aims to elucidate their efficacy and potential as disease-modifying therapies.Furthermore, the review explores the concept of multi-target approaches, emphasizing their relevance in tackling the complex pathology of PD. By providing comprehensive insights into these novel targets and their therapeutic implications, this review aims to guide future research directions and clinical developments toward more effective treatments for PD and related neurodegenerative disorders.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Animales , Antiparkinsonianos/uso terapéutico , Terapia Molecular Dirigida/métodos
2.
Curr Res Toxicol ; 7: 100181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021403

RESUMEN

Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.

3.
Curr Pharm Des ; 30(19): 1459-1471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616755

RESUMEN

Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/terapia , Terapia Genética , Animales , Medicina de Precisión
4.
BMC Med ; 22(1): 74, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369520

RESUMEN

BACKGROUND: Neuregulin-1 (NRG1) is implicated in both cancer and neurologic diseases such as amyotrophic lateral sclerosis (ALS); however, to date, there has been little cross-field discussion between neurology and oncology in regard to these genes and their functions. MAIN BODY: Approximately 0.15-0.5% of cancers harbor NRG1 fusions that upregulate NRG1 activity and hence that of the cognate ERBB3/ERBB4 (HER3/HER4) receptors; abrogating this activity with small molecule inhibitors/antibodies shows preliminary tissue-agnostic anti-cancer activity. Notably, ERBB/HER pharmacologic suppression is devoid of neurologic toxicity. Even so, in ALS, attenuated ERBB4/HER4 receptor activity (due to loss-of-function germline mutations or other mechanisms in sporadic disease) is implicated; indeed, ERBB4/HER4 is designated ALS19. Further, secreted-type NRG1 isoforms may be upregulated (perhaps via a feedback loop) and could contribute to ALS pathogenesis through aberrant glial cell stimulation via enhanced activity of other (e.g., ERBB1-3/HER1-3) receptors and downstream pathways. Hence, pan-ERBB inhibitors, already in use for cancer, may be agents worthy of testing in ALS. CONCLUSION: Common signaling cascades between cancer and ALS may represent novel therapeutic targets for both diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neoplasias , Neurregulina-1 , Receptor ErbB-4 , Humanos , Esclerosis Amiotrófica Lateral/genética , Neoplasias/genética , Neurregulina-1/genética , Neurregulina-1/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Transducción de Señal
5.
Crit Rev Oncol Hematol ; 193: 104203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979734

RESUMEN

Ferroptosis, a novel form of iron-dependent cell death, has emerged as a potential avenue for promoting tumor cell death by causing cell membrane rupture and the accumulation of lipid peroxides (LPO) in the cell. Since its discovery in 2012, extensive research has been conducted to explore the mechanism of ferroptosis inducers, including erastin, sulfasalazine, and sorafenib. These compounds inhibit system XC-, while Ras-selective lethal small molecule 3 (RSL3) and FION2 specifically target GPX4 to promote ferroptosis. Therefore, targeting ferroptosis presents a promising therapeutic approach for malignant tumors. While the study of ferroptosis in solid tumors has made significant progress, there is limited information available on its role in hematological tumors. This review aims to summarize the molecular mechanisms of ferroptosis inducers and discuss their clinical applications in hematological malignancies. Furthermore, the identification of non-coding RNAs (ncRNAs) and genes that regulate key molecules in the ferroptosis pathway could provide new targets and establish a molecular theoretical foundation for exploring novel ferroptosis inducers in hematological malignancies.


Asunto(s)
Ferroptosis , Neoplasias Hematológicas , Neoplasias , Humanos , Muerte Celular/fisiología , Neoplasias/patología , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética
6.
Curr Drug Targets ; 24(17): 1298-1316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38083893

RESUMEN

Rheumatoid arthritis is an untreatable autoimmune disorder. The disease is accompanied by joint impairment and anomalies, which negatively affect the patient's quality of life and contribute to a decline in manpower. To diagnose and treat rheumatoid arthritis, it is crucial to understand the abnormal signaling pathways that contribute to the disease. This understanding will help develop new rheumatoid arthritis-related intervention targets. Over the last few decades, researchers have given more attention to rheumatoid arthritis. The current review seeks to provide a detailed summary of rheumatoid arthritis, highlighting the basic description of the disease, past occurrences, the study of epidemiology, risk elements, and the process of disease progression, as well as the key scientific development of the disease condition and multiple signaling pathways and enumerating the most current advancements in discovering new rheumatoid arthritis signaling pathways and rheumatoid arthritis inhibitors. This review emphasizes the anti-rheumatoid effects of these inhibitors [for the Wnt/ß-catenin, Phosphoinositide 3-Kinases (PI3K/AKT), Spleen Tyrosine Kinase (SYK), and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) signaling pathways], illustrating their mechanism of action through a literature search, current therapies, and novel drugs under pre-clinical and clinical trials.


Asunto(s)
Artritis Reumatoide , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , beta Catenina/metabolismo , Calidad de Vida , Transducción de Señal , Artritis Reumatoide/metabolismo , Quinasa Syk/metabolismo , Quinasa Syk/uso terapéutico
7.
ACS Infect Dis ; 9(12): 2369-2385, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37944023

RESUMEN

Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Antituberculosos/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Replicación del ADN
9.
J Mol Neurosci ; 73(9-10): 751-762, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37684515

RESUMEN

Circular RNAs (circRNAs) are abundantly and stably expressed in the brain of mammals and humans. Some circRNAs are implicated in ischemic stroke. Therefore, we aimed to detect how circRNAs change in the key penumbra area during cerebral ischemia-reperfusion (CI/R) injury. Rats were subjected to transient middle cerebral artery occlusion (tMCAO), during which the permanent blocking period was 2 h and reperfusion time was 24 or 72 h. Then modified neurologic severity score (mNSS), triphenyl tetrazolium chloride (TTC) staining and HE staining were used to exhibiting damage between rats in different groups. The penumbra regions of all rats were dissected and total RNA was further processed for high-throughput sequencing. CircRNA expression profiles were screened and bioinformatics analyses were conducted to investigate these differentially expressed circRNAs. Some of them were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), followed by the establishment of a circRNA-miRNA-mRNA network and the detection of their downstream molecules. A total of 99 and 98 circRNAs were differentially expressed at CI/R 24 h and CI/R 72 h, respectively. Notably, 21 circRNAs significantly changed at both reperfusion points. Three circRNAs, namely circ.7225, circ.5415, and circ.20623 were found to be associated with CI/R injury and might be preferred targets. Common downstream miR-298-5p and Bcl-3 were found to make up the circRNA-miRNA-mRNA network. Novel circRNA targets came to light in the penumbra of rats during CI/R injury and might establish the circRNA-miRNA-mRNA relationship, thus serving as potential biomarkers for ischemic stroke treatment.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Daño por Reperfusión , Humanos , Ratas , Animales , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Mamíferos/genética
10.
Int J Pharm ; 645: 123384, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678472

RESUMEN

The current work aims to design and provide a preliminary IND-enabling study of selective BMX inhibitors for cancer therapeutics development. BMX is an emerging target, more notably in oncological and immunological diseases. In this work, we have employed a predictive AI-based platform to design the selective inhibitors considering the novelty, IP prior protection, and drug-likeness properties. Furthermore, selected top candidates from the initial iteration of the design were synthesized and chemically characterized utilizing 1H NMR and LC-MS. Employing a panel of biochemical (enzymatic) and cancer cell lines, the selected molecules were tested against these assays. In addition, we used artificial intelligence to predict and evaluate several critical IND-focused physicochemical and pharmacokinetics values of the selected molecules. A secondary objective of the current work was also to validate the sole role of BMX in animal models known to be mediated by BMX. More than 50 molecules were designed in the present study employing five novel discovered scaffolds. Two molecules were nominated for further IND-focused studies. Compound II showed promising in-vitro activity against BMX in both enzymatic assays compared to other kinases and in cancer cell lines with known BMX overexpression. Interestingly, compound II showed very favorable physicochemical and pharmacokinetics properties as predicted by the used platforms. The animal study further confirmed the sole role of BMX in the disease model. The current work provides promising data on a selective BMX inhibitor as a potential lead for therapeutics development, and the asset is currently in the optimization stage. Notably, the current study shows a framework for a combined approach employing both AI and experimentation that can be used by academic labs in their research programs to more streamline programs into IND-focused to be bridged easily for further clinical development with industrial partners.

12.
Funct Integr Genomics ; 23(3): 262, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540264

RESUMEN

Hepatocellular carcinoma (HCC), a highly heterogeneous malignant tumor associated with a poor prognosis, is a common cause of cancer-related deaths worldwide, with a limited survival benefit for patients despite ongoing therapeutic breakthroughs. Coronavirus disease 2019 (COVID-19), a severe infectious disease caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), is a global pandemic and a serious threat to human health. The increased susceptibility to SARS-CoV-2 infection and a poor prognosis in patients with cancer necessitate the exploration of the potential link between the two. No studies have investigated the relationship of COVID-19 genes with the prognosis and tumor development in patients with HCC. We screened prognosis-related COVID-19 genes in HCC, performed molecular typing, developed a stable and reliable COVID-19 genes signature for predicting survival, characterized the immune microenvironment in HCC patients, and explored new molecular therapeutic targets. Datasets of HCC patients, including RNA sequencing data and clinical information, were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and Gene Expression Omnibus (GEO) databases. Prognosis-related COVID-19 genes were identified by univariate Cox analysis. Molecular typing of HCC was performed using the consensus non-negative matrix factorization method (cNMF), followed by the analysis of survival, tumor microenvironment, and pathway enrichment for each subtype. Prognostic signatures were constructed using LASSO-Cox regression models, and receiver operating characteristic (ROC) curves were used to validate the predictive performance of the signature. The same approach was used for the test and external validation sets. Seven software packages were applied to determine the abundance of immune infiltration in HCC patients and investigate its relationship with the risk scores. Gene set enrichment analysis (GSEA) was used to explore the potential mechanisms by which the COVID-19 genes affect hepatocarcinogenesis and prognosis. Three types of machine learning methods were combined to identify the most critical genes in the signature and localize their expression at the single cell level. We identified 53 prognosis-related COVID-19 genes and classified HCC into two molecular subtypes (C1, C2) by using the NMF method. The prognosis of C2 was significantly better than that of C1, and the two subtypes differed remarkably in terms of the tumor immune microenvironment and biological functions. The 17 COVID-19 genes were screened using the LASSO regression method to develop a 17 COVID-19 genes signature, which demonstrated a good predictive performance for 1-, 2- and 3-year OS of patients with HCC. The risk score as an independent prognostic factor for HCC has better predictive accuracy than traditional clinical variables. Patients in the TCGA cohort were categorized by risk score into the high- and low-risk groups, with the high-risk group mainly enriched in the immune modulation-related pathways and the low-risk group mainly enriched in the metabolism-related pathways, suggesting that the COVID-19 genes may affect disease progression and prognosis by regulating the tumor immune microenvironment and metabolism in HCC. NOL10 was identified as the most critical gene in the signature and hypothesized to be a potential therapeutic target for HCC. Objectively, the COVID-19 genes signature developed in this study, as an independent prognostic factor in HCC patients, is closely associated with the prognosis and tumor immune microenvironment of HCC patients and indicates that they may regulate the development of HCC in multiple ways, providing us with new perspectives for understanding the molecular mechanisms of HCC and finding effective therapeutic targets.


Asunto(s)
COVID-19 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , COVID-19/genética , Microambiente Tumoral/genética , SARS-CoV-2/genética , Neoplasias Hepáticas/genética
13.
Chembiochem ; 24(17): e202300319, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37501334

RESUMEN

Chemical probes allow us to identify, validate and confirm novel targets for therapeutic applications, enable the development of drug candidates, and open the way to new therapeutic strategies, vaccines and diagnostic tools.


Asunto(s)
Vacunas , Fenómenos Químicos , Biología
15.
3 Biotech ; 13(7): 218, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37265542

RESUMEN

Recent research has focused mostly on understanding and combating the neurodegenerative mechanisms and symptoms of Parkinson's disease (PD). Moreover, developing novel therapeutic targets to halt the progression of PD remains a key focus for researchers. As yet, no agents have been found to have unambiguous evidence of disease-modifying actions in PD. The primary objective of this review is to summarize the promising targets that have recently been uncovered which include histamine 4 receptors, beta2 adrenergic receptor, phosphodiesterase 4, sphingosine-1-phosphate receptor subtype 1, angiotensin receptors, high-mobility group box 1, rabphilin-3A, purinergic 2Y type 12 receptor, colony-stimulating factor-1 receptor, transient receptor potential vanilloid 4, alanine-serine-cysteine transporter 2, G protein-coupled oestrogen receptor, a mitochondrial antiviral signalling protein, glucocerebrosidase, indolamine-2,3-dioxygenase-1, soluble epoxy hydroxylase and dual specificity phosphatase 6. We have also reviewed the molecular signalling cascades of those novel targets which cause the initiation and progression of PD and gathered some emerging disease-modifying agents that could slow the progression of PD. These approaches will assist in the discovery of novel target molecules, for curing disease symptoms and may provide a glimmer of hope for the treatment of PD. As of now, there is no drug available that will completely prevent the progression of PD by inhibiting the pathogenesis involved in PD, and thus, the newer targets and their inhibitors or activators are the major focus for researchers to suppress PD symptomatology. And the major limitations of these targets are the lack of clinical data and less number pre-clinical data, as we have majorly discussed the different targets which all have well reported for other disease pathogenesis. Thus, finding the disease-drug interactions, the molecular mechanisms, and the major side effects will be major challenges for the researchers.

16.
ACS Chem Neurosci ; 14(11): 1935-1949, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227448

RESUMEN

Parkinson's disease (PD) is the second most prevailing progressive disorder leading to neurodegeneration, typically in people above 65 years of age. Motor clinical manifestations of PD appear in a much later stage and include rigidity, tremors, akinesia, and gait dysfunction. There are also nonmotor symptoms like GI and olfactory dysfunction. However, they cannot be considered for diagnosis of the disease, as they are unspecific. PD pathogenesis is mainly characterized by deposits of inclusion bodies on dopaminergic (DA) neurons in substantia nigra pars compacta region (SNpc) of the brain. The major component of these inclusion bodies, are α-synuclein aggregates. α-Synuclein undergoes misfolding and oligomerization to form aggregates and fibrils. These aggregates gradually propagate PD pathology. Other prominent features of this pathological development include mitochondrial dysfunction, neuroinflammation, oxidative stress, and impaired autophagy. These all contribute to neuronal degeneration. Besides this, there are many underlying factors which influence these processes. These factors comprise molecular proteins and signaling cascades. In this review, we have listed out underexplored molecular targets that may aid in development of neoteric and advanced therapeutics.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Porción Compacta de la Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Encéfalo/metabolismo
17.
Diabetol Metab Syndr ; 15(1): 17, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782201

RESUMEN

Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.

18.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36597783

RESUMEN

Acinetobacter baumannii is a strictly aerobic, nonmotile, nonfermenting, gram-negative bacillus. It is a highly infectious and invasive pathogen with high mortality and morbidity rates among immunodeficient patients. Due to increasing levels of drug resistance and the inefficiency of existing antimicrobial treatments, it is crucial to develop novel agents to control this pathogen. Several recent studies have investigated virulence factors that are associated with the pathogenesis of A. baumannii, and could thus serve as novel therapeutic targets. The present review comprehensively summarizes the current understanding of these virulence factors and their mechanisms in A. baumannii. We also highlight factors that could be potential therapeutic targets, as well as list candidate virulence factors for future researchers and clinical practitioners.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antiinfecciosos , Humanos , Factores de Virulencia/genética , Virulencia , Infecciones por Acinetobacter/tratamiento farmacológico , Antiinfecciosos/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple
19.
Curr Mol Pharmacol ; 16(3): 254-279, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36056834

RESUMEN

BACKGROUND: Alzheimer's disease (AD), the primary cause of dementia, escalating worldwide, has no proper diagnosis or effective treatment. Neuronal cell death and impairment of cognitive abilities, possibly triggered by several brain mechanisms, are the most significant characteristic of this disorder. METHODS: A multitude of pharmacological targets have been identified for potential drug design against AD. Although many advances in treatment strategies have been made to correct various abnormalities, these often exhibit limited clinical significance because this disease aggressively progresses into different regions of the brain, causing severe deterioration. RESULTS: These biomarkers can be game-changers for early detection and timely monitoring of such disorders. CONCLUSION: This review covers clinically significant biomarkers of AD for precise and early monitoring of risk factors and stages of this disease, the potential site of action and novel targets for drugs, and pharmacological approaches to clinical management.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo
20.
Curr Top Microbiol Immunol ; 444: 279-304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38231223

RESUMEN

Gastric cancer is the fifth most common cancer and the fourth leading cause of cancer-associated death in the world. Endoscopic resection can be the treatment in selected cases of very early gastric cancer. Surgery is recommended for tumors that do not meet the criteria for endoscopic resection or for tumors with lymph node invasion but without distant metastases. Gastrectomy should include D2 lymphadenectomy without splenectomy. Perioperative or adjuvant chemotherapy improves survival and is recommended in locally advanced gastric cancer (>T1 and/or with lymph nodes positive). In locally advanced cancer with microsatellite instability (MSI), immunotherapy should be considered. Advanced unresectable or metastatic gastric cancer has a poor prognosis. The basis of the treatment is cytotoxic chemotherapy, with platinum and fluoropyrimidine doublet in the first line. Targeted therapies can be combined with chemotherapy. Trastuzumab (anti-HER2) is recommended in the first line in HER2-positive cancer. Ramucirumab (anti-VEGFR2) is recommended in the second line, in addition to paclitaxel chemotherapy. Zolbetuximab (anti-Claudine 18.2) should also be considered in the first line in Claudine 18.2-positive cancer. Immunotherapy can also be associated with chemotherapy in the first line of PD-L1-positive cancer. In HER2-positive and PD-L1-positive cancer, adjunction of trastuzumab and immunotherapy should be considered. In advanced and metastatic cancer with microsatellite instability (MSI), immunotherapy should be the first choice depending on its availability. Important progress has been made in recent years in the treatment of gastric cancer, especially due to a better understanding of molecular characteristics and heterogeneity of this disease. New targets and therapeutic approaches are being developed, which will very likely lead to changes in the management of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Antígeno B7-H1 , Inestabilidad de Microsatélites , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA