Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genetica ; 150(5): 273-288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35838895

RESUMEN

Rice is highly vulnerable to salt stress at both seedling and flowering stage. While research efforts largely focused on seedling stage salinity tolerance, flowering stage salt tolerance studies are limited. Development of rice cultivars with salt tolerance at both stages will enhance rice productivity in salt affected farmlands. In the present study, two introgression line (IL) populations of a salt-tolerant landrace 'Nona Bokra (N)' were developed in the genetic backgrounds of two U.S. cultivars 'Cheniere (C)' and 'Jupiter (J)' and were evaluated for elucidation of the genetic basis of agronomically important traits at flowering stage and development of salt tolerant pre-breeding lines. Evaluation of both sets of ILs (JN-ILs and CN-ILs) under saline (EC = 8 dSm-1) environment led to identification of a total of 33 QTLs for seven different yield and yield component traits impacted by salt stress. Majority of large-effect QTLs for traits such as panicle length (qPL1.1JN), spikelet sterility (qSS1.1JN), thousand-grain weight (qTGW1.1JN), days to flowering (qDFF1.1CN), and plant height (qPH1.1CN) were located on chromosome 1. Some candidate genes present within the major effect QTL regions include potassium channel OsKAT1, NAC domain-containing protein, potassium transporters, and photosensitive leaf rolling 1. Comparison of the results with earlier reports on seedling stage suggested a different set of genes controlling salt tolerance at both stages. In addition, pre-breeding lines with improved flowering stage salinity tolerance were identified. These pre-breeding rice lines will accelerate fine mapping, map-based cloning, and pyramiding of desirable alleles for both flowering and seedling stage salt tolerance through marker assisted selection.


Asunto(s)
Oryza , Fitomejoramiento , Potasio/metabolismo , Canales de Potasio/metabolismo , Tolerancia a la Sal/genética , Plantones/genética , Plantones/metabolismo
2.
J Hered ; 108(6): 658-670, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28821187

RESUMEN

Salinity is an important abiotic stress affecting rice production worldwide. Development of salt tolerant varieties is the most feasible approach for improving rice productivity in salt affected soils. In rice, seedling stage salinity tolerance is crucial for better crop establishment. Quantitative trait loci (QTL) mapping using introgression lines (ILs) is useful for identification and simultaneous transfer of desirable alleles into elite genetic background. In the present study, 138 ILs derived from the cross between a high yielding elite salt susceptible japonica rice cultivar Jupiter and a salt tolerant indica landrace Nona Bokra were evaluated for salt tolerance at seedling stage in a hydroponics experiment and were genotyped using 126 simple sequence repeat markers. A total of 33 additive QTLs were detected by composite interval mapping for 8 morphophysiological traits. The phenotypic responses, genomic composition, and QTLs identified from the study indicated that Na/K ratio is the key factor for salinity tolerance. The mechanisms of tolerance might be due to homeostasis between Na+ and K+ or Na+ compartmentation. Gene ontology (GO) analysis revealed that significant GO terms in the selected QTL regions were associated with the genes/pathways involved in signaling, enzyme inhibition, and ion transport. Because majority of QTLs are with small effects, marker-assisted recurrent selection is proposed to accumulate favorable alleles for improving salt tolerance using the tolerant ILs identified in this study. The tolerant ILs also provide an opportunity for functional genomics studies to provide molecular insights into salt tolerance mechanisms in Nona Bokra.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo , Plantas Tolerantes a la Sal/genética , Plantones/genética , Alelos , Mapeo Cromosómico , Cruzamientos Genéticos , Genotipo , Repeticiones de Microsatélite , Oryza/fisiología , Fenotipo , Potasio/química , Salinidad , Plantas Tolerantes a la Sal/fisiología , Plantones/fisiología , Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA