Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Foods ; 13(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38201183

RESUMEN

Climate change is the reason behind most contemporary economic problems. The rising inflationary pressures in the food sector are one of these problems, and stable food prices are a necessity for economic development and social cohesion in societies. Therefore, this study analyzes the relationship between food prices and climate change in Nigeria by using various non-linear and quantile-based methods and data from 2008m5 to 2020m12. The empirical findings indicate that (i) there is a time- and frequency-based dependence between food prices and some explanatory variables, including climate change (i.e., temperature). (ii) At higher quantiles, temperature, oil prices, food exports, monetary expansion, global food prices, agricultural prices, and fertilizer prices stimulate food prices. (iii) The increase in food prices due to the rise in temperature and the difficulties in agriculture indicate that the heatflation phenomenon is present in Nigeria. The evidence outlines that Nigerian decisionmakers should adopt a national food security policy that considers environmental, agricultural, and monetary factors to stabilize food prices.

2.
Comput Biol Med ; 170: 107857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244468

RESUMEN

Recent research is revealing how cognitive processes are supported by a complex interplay between the brain and the rest of the body, which can be investigated by the analysis of physiological features such as breathing rhythms, heart rate, and skin conductance. Heart rate dynamics are of particular interest as they provide a way to track the sympathetic and parasympathetic outflow from the autonomic nervous system, which is known to play a key role in modulating attention, memory, decision-making, and emotional processing. However, extracting useful information from heartbeats about the autonomic outflow is still challenging due to the noisy estimates that result from standard signal-processing methods. To advance this state of affairs, we propose a novel approach in how to conceptualise and model heart rate: instead of being a mere summary of the observed inter-beat intervals, we introduce a modelling framework that views heart rate as a hidden stochastic process that drives the observed heartbeats. Moreover, by leveraging the rich literature of state-space modelling and Bayesian inference, our proposed framework delivers a description of heart rate dynamics that is not a point estimate but a posterior distribution of a generative model. We illustrate the capabilities of our method by showing that it recapitulates linear properties of conventional heart rate estimators, while exhibiting a better discriminative power for metrics of dynamical complexity compared across different physiological states.


Asunto(s)
Sistema Nervioso Autónomo , Corazón , Frecuencia Cardíaca/fisiología , Teorema de Bayes , Sistema Nervioso Autónomo/fisiología , Encéfalo/fisiología
3.
Front Public Health ; 11: 1099263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37033082

RESUMEN

Introduction: Perinatal asphyxia is one of the most frequent causes of neonatal mortality, affecting approximately four million newborns worldwide each year and causing the death of one million individuals. One of the main reasons for these high incidences is the lack of consensual methods of early diagnosis for this pathology. Estimating risk-appropriate health care for mother and baby is essential for increasing the quality of the health care system. Thus, it is necessary to investigate models that improve the prediction of perinatal asphyxia. Access to the cardiotocographic signals (CTGs) in conjunction with various clinical parameters can be crucial for the development of a successful model. Objectives: This exploratory work aims to develop predictive models of perinatal asphyxia based on clinical parameters and fetal heart rate (fHR) indices. Methods: Single gestations data from a retrospective unicentric study from Centro Hospitalar e Universitário do Porto de São João (CHUSJ) between 2010 and 2018 was probed. The CTGs were acquired and analyzed by Omniview-SisPorto, estimating several fHR features. The clinical variables were obtained from the electronic clinical records stored by ObsCare. Entropy and compression characterized the complexity of the fHR time series. These variables' contribution to the prediction of asphyxia perinatal was probed by binary logistic regression (BLR) and Naive-Bayes (NB) models. Results: The data consisted of 517 cases, with 15 pathological cases. The asphyxia prediction models showed promising results, with an area under the receiver operator characteristic curve (AUC) >70%. In NB approaches, the best models combined clinical and SisPorto features. The best model was the univariate BLR with the variable compression ratio scale 2 (CR2) and an AUC of 94.93% [94.55; 95.31%]. Conclusion: Both BLR and Bayesian models have advantages and disadvantages. The model with the best performance predicting perinatal asphyxia was the univariate BLR with the CR2 variable, demonstrating the importance of non-linear indices in perinatal asphyxia detection. Future studies should explore decision support systems to detect sepsis, including clinical and CTGs features (linear and non-linear).


Asunto(s)
Asfixia Neonatal , Asfixia , Lactante , Embarazo , Femenino , Recién Nacido , Humanos , Estudios Retrospectivos , Teorema de Bayes , Asfixia Neonatal/diagnóstico , Asfixia Neonatal/epidemiología , Feto
4.
Dev Sci ; 26(4): e13350, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36440660

RESUMEN

The development of the unique, hierarchical, and endless combinatorial capacity in a human language requires neural maturation and learning through childhood. Compared with most non-human primates, where combinatorial capacity seems limited, chimpanzees present a complex vocal system comprising hundreds of vocal sequences. We investigated how such a complex vocal system develops and the processes involved. We recorded 10,929 vocal utterances of 98 wild chimpanzees aged 0-55 years, from Taï National Park, Ivory Coast. We developed customized Generalized non-Linear Models to estimate the ontogenetic trajectory of four structural components of vocal complexity: utterance length, diversity, probability of panting (requiring phonation across inhalation and exhalation), and probability of producing two adjacent panted units. We found chimpanzees need 10 years to reach adult levels of vocal complexity. In three variables, the steepest increase coincided with the age of first non-kin social interactions (2-5 years), and plateaued in sub-adults (8-10 years), as individuals integrate into adult social life. Producing two adjacent panted units may require more neuromuscular coordination of the articulators, as its emergence and steepest increase appear later in development. These results suggest prolonged maturational processes beyond those hitherto thought likely in species that do not learn their vocal repertoire. Our results suggest that multifaceted ontogenetic processes drive increases in vocal structural complexity in chimpanzees, particularly increases in social complexity and neuro-muscular maturation. As humans live in a complex social world, empirical support for the "social complexity hypothesis" may have relevance for theories of language evolution. RESEARCH HIGHLIGHTS: Chimpanzees need around 10 years to develop the vocal structural complexity present in the adult repertoire, way beyond the age of emergence of every single vocal unit. Multifaceted ontogenetic processes may drive increases in vocal structural complexity in chimpanzees, particularly increases in social complexity and neuro-muscular maturation. Non-linear increases in vocal complexity coincide with social developmental milestones. Vocal sequences requiring rapid articulatory change emerge later than other vocal sequences, suggesting neuro-muscular maturational processes continue through the juvenile years.


Asunto(s)
Hominidae , Voz , Animales , Adulto , Humanos , Niño , Pan troglodytes , Aprendizaje
5.
PeerJ ; 10: e13890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966920

RESUMEN

Finite element analysis (FEA) is no longer a new technique in the fields of palaeontology, anthropology, and evolutionary biology. It is nowadays a well-established technique within the virtual functional-morphology toolkit. However, almost all the works published in these fields have only applied the most basic FEA tools i.e., linear materials in static structural problems. Linear and static approximations are commonly used because they are computationally less expensive, and the error associated with these assumptions can be accepted. Nonetheless, nonlinearities are natural to be used in biomechanical models especially when modelling soft tissues, establish contacts between separated bones or the inclusion of buckling results. The aim of this review is to, firstly, highlight the usefulness of non-linearities and secondly, showcase these FEA tool to researchers that work in functional morphology and biomechanics, as non-linearities can improve their FEA models by widening the possible applications and topics that currently are not used in palaeontology and anthropology.


Asunto(s)
Evolución Biológica , Paleontología , Análisis de Elementos Finitos , Antropología/métodos , Huesos
6.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888860

RESUMEN

This brief presents a tutorial on multifaceted techniques for high efficiency piezoelectric energy harvesting. For the purpose of helping design piezoelectric energy harvesting system according to different application scenarios, we summarize and discuss the recent design trends and challenges. We divide the design focus into the following three categories, namely, (1) AC-DC rectifiers, (2) CP compensation circuits, (3) maximum power point tracking (MPPT) circuits. The features, problems encountered, and suitable systems of various AC-DC rectifier topologies are introduced and compared. The important role of non-linear methods for piezoelectric energy harvesting is illustrated from the perspective of impedance matching. Energy extraction techniques and voltage flipping techniques based on inductors, capacitors, and hybrid structures are analyzed. MPPT techniques with different features and targets are discussed.

7.
Front Med (Lausanne) ; 8: 661226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917624

RESUMEN

The analysis of fetal heart rate variability has served as a scientific and diagnostic tool to quantify cardiac activity fluctuations, being good indicators of fetal well-being. Many mathematical analyses were proposed to evaluate fetal heart rate variability. We focused on non-linear analysis based on concepts of chaos, fractality, and complexity: entropies, compression, fractal analysis, and wavelets. These methods have been successfully applied in the signal processing phase and increase knowledge about cardiovascular dynamics in healthy and pathological fetuses. This review summarizes those methods and investigates how non-linear measures are related to each paper's research objectives. Of the 388 articles obtained in the PubMed/Medline database and of the 421 articles in the Web of Science database, 270 articles were included in the review after all exclusion criteria were applied. While approximate entropy is the most used method in classification papers, in signal processing, the most used non-linear method was Daubechies wavelets. The top five primary research objectives covered by the selected papers were detection of signal processing, hypoxia, maturation or gestational age, intrauterine growth restriction, and fetal distress. This review shows that non-linear indices can be used to assess numerous prenatal conditions. However, they are not yet applied in clinical practice due to some critical concerns. Some studies show that the combination of several linear and non-linear indices would be ideal for improving the analysis of the fetus's well-being. Future studies should narrow the research question so a meta-analysis could be performed, probing the indices' performance.

8.
Molecules ; 25(13)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630676

RESUMEN

Food analysis is a challenging analytical problem, often addressed using sophisticated laboratory methods that produce large data sets. Linear and non-linear multivariate methods can be used to process these types of datasets and to answer questions such as whether product origin is accurately labeled or whether a product is safe to eat. In this review, we present the application of non-linear methods such as artificial neural networks, support vector machines, self-organizing maps, and multi-layer artificial neural networks in the field of chemometrics related to food analysis. We discuss criteria to determine when non-linear methods are better suited for use instead of traditional methods. The principles of algorithms are described, and examples are presented for solving the problems of exploratory analysis, classification, and prediction.


Asunto(s)
Quimioinformática/métodos , Análisis de los Alimentos/métodos , Algoritmos , Análisis de los Alimentos/estadística & datos numéricos , Redes Neurales de la Computación , Dinámicas no Lineales , Máquina de Vectores de Soporte
9.
Med Biol Eng Comput ; 57(3): 741-755, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30390223

RESUMEN

This paper presents a unified approach based on the recurrence quantification analysis (RQA) and approximate entropy (ApEn) for the classification of heart rate variability (HRV). In this paper, the optimum tolerance threshold (ropt) corresponding to ApEnmax has been used for RQA calculation. The experimental data length (N) of RR interval series (RRi) is optimized by taking ropt as key parameter. ropt is found to be lying within the recommended range of 0.1 to 0.25 times the standard deviation of the RRi, when N ≥ 300. Consequently, RQA is applied to the age stratified RRi and indices such as percentage recurrence (%REC), percentage laminarity (%LAM), and percentage determinism (%DET) are calculated along with ApEnmax, [Formula: see text], [Formula: see text], and an index namely the radius differential (RD). Certain standard HRV statistical indices such as mean RR, standard deviation of RR (or NN) interval (SDNN), and the square root of the mean squared differences of successive RR intervals (RMSSD) (Eur Hear J 17:354-381, 1996) are also found for comparison. It is observed that (i) RD can discriminate between the elderly and young subjects with a value of 0.1151 ± 0.0236 (mean ± SD) and 0.0533 ± 0.0133 (mean ± SD) respectively for the elderly and young subjects and is found to be statistically significant with p < 0.05. (ii) Similar significant discrimination was obtained using [Formula: see text] with a value of 0.1827 ± 0.0382 (mean ± SD) and 0.2248 ± 0.0320 (mean ± SD) (iii) other significant indices were found to be %REC, %DET, %LAM, SDNN, and RMSSD; however, ApEnmax was found to be insignificant with p > 0.05. The above features of RRi time series were tested for classification using support vector machine (SVM) and multilayer perceptron neural network (MLPNN). Higher classification accuracy was achieved using SVM with a maximum value of 99.71%. Graphical abstract.


Asunto(s)
Frecuencia Cardíaca/fisiología , Modelos Cardiovasculares , Máquina de Vectores de Soporte , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Interpretación Estadística de Datos , Bases de Datos Factuales , Entropía , Humanos , Persona de Mediana Edad , Redes Neurales de la Computación , Dinámicas no Lineales
10.
Cogn Neurodyn ; 10(3): 225-34, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27275378

RESUMEN

Recent studies show right hemisphere has a unique contribution to emotion processing. The present study investigated EEG using non-linear measures during emotional processing in PD patients with respect to motor symptom asymmetry (i.e., most affected body side). We recorded 14-channel wireless EEGs from 20 PD patients and 10 healthy age-matched controls (HC) by eliciting emotions such as happiness, sadness, fear, anger, surprise and disgust. PD patients were divided into two groups, based on most affected body side and unilateral motor symptom severity: left side-affected (LPD, n = 10) or right side-affected PD patients (RPD, n = 10). Nonlinear analysis of these emotional EEGs were performed by using approximate entropy, correlation dimension, detrended fluctuation analysis, fractal dimension, higher order spectra, hurst exponent (HE), largest Lyapunov exponent and sample entropy. The extracted features were ranked using analysis of variance based on F value. The ranked features were then fed into classifiers namely fuzzy K-nearest neighbor and support vector machine to obtain optimal performance using minimum number of features. From the experimental results, we found that (a) classification performance across all frequency bands performed well in recognizing emotional states of LPD, RPD, and HC; (b) the emotion-specific features were mainly related to higher frequency bands; and (c) predominantly LPD patients (inferred right-hemisphere pathology) were more impaired in emotion processing compared to RPD, as showed by a poorer classification performance. The results suggest that asymmetric neuronal degeneration in PD patients may contribute to the impairment of emotional communication.

11.
Comput Biol Med ; 48: 133-49, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24681634

RESUMEN

The Electrocardiogram (ECG) is the P-QRS-T wave depicting the cardiac activity of the heart. The subtle changes in the electric potential patterns of repolarization and depolarization are indicative of the disease afflicting the patient. These clinical time domain features of the ECG waveform can be used in cardiac health diagnosis. Due to the presence of noise and minute morphological parameter values, it is very difficult to identify the ECG classes accurately by the naked eye. Various computer aided cardiac diagnosis (CACD) systems, analysis methods, challenges addressed and the future of cardiovascular disease screening are reviewed in this paper. Methods developed for time domain, frequency transform domain, and time-frequency domain analysis, such as the wavelet transform, cannot by themselves represent the inherent distinguishing features accurately. Hence, nonlinear methods which can capture the small variations in the ECG signal and provide improved accuracy in the presence of noise are discussed in greater detail in this review. A CACD system exploiting these nonlinear features can help clinicians to diagnose cardiovascular disease more accurately.


Asunto(s)
Diagnóstico por Computador/métodos , Electrocardiografía/métodos , Procesamiento de Señales Asistido por Computador , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Humanos
12.
Front Physiol ; 2: 81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22084633

RESUMEN

The time-domain measures and power-spectral analysis of heart rate variability (HRV) are classic conventional methods to assess the complex regulatory system between autonomic nervous system and heart rate and are most widely used. There are abundant scientific data about the prognostic significance of the conventional measurements of HRV in patients with various conditions, particularly with myocardial infarction. Some studies have suggested that some newer measures describing non-linear dynamics of heart rate, such as fractal measures, may reveal prognostic information beyond that obtained by the conventional measures of HRV. An ideal risk indicator could specifically predict sudden arrhythmic death as the implantable cardioverter-defibrillator (ICD) therapy can prevent such events. There are numerically more sudden deaths among post-infarction patients with better preserved left ventricular function than in those with severe left ventricular dysfunction. Recent data support the concept that HRV measurements, when analyzed several weeks after acute myocardial infarction, predict life-threatening ventricular tachyarrhythmias in patients with moderately depressed left ventricular function. However, well-designed prospective randomized studies are needed to evaluate whether the ICD therapy based on the assessment of HRV alone or with other risk indicators improves the patients' prognosis. Several issues, such as the optimal target population, optimal timing of HRV measurements, optimal methods of HRV analysis, and optimal cutpoints for different HRV parameters, need clarification before the HRV analysis can be a widespread clinical tool in risk stratification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA