Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805961

RESUMEN

Three-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.


Asunto(s)
Organoides , Neoplasias de la Vejiga Urinaria , Biomarcadores/metabolismo , Cisplatino/farmacología , Humanos , Organoides/metabolismo , Medicina de Precisión , Neoplasias de la Vejiga Urinaria/metabolismo
2.
Int J Biol Sci ; 17(3): 728-741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33767584

RESUMEN

Visualization of cell-cycle G1 phase for monitoring the early response of cell cycle specific drug remains challenging. In this study, we developed genetically engineered bioluminescent reporters by fusing full-length cyclin E to the C-terminal luciferase (named as CycE-Luc and CycE-Luc2). Next, HeLa cell line or an ER-positive breast cancer cell line MCF-7 was transfected with these reporters. In cellular assays, the bioluminescent signal of CycE-Luc and CycE-Luc2 was accumulated in the G1 phase and decreased after exiting from the G1 phase. The expression of CycE-Luc and CycE-Luc2 fusion protein was regulated in a cell cycle-dependent manner, which was mediated by proteasome ubiquitination and degradation. Next, our in vitro and in vivo experiment confirmed that the cell cycle arrested by anti-cancer agents (palbociclib or 5-FU) was monitored quantitatively and dynamically by bioluminescent imaging of these reporters in a real-time and non-invasive manner. Thus, these optical reporters could reflect the G1 phase alternation of cell cycle, and might become a future clinically translatable approach for predicting and monitoring response to palbociclib in patients with ER-positive breast cancer.


Asunto(s)
Ciclina E , Colorantes Fluorescentes , Puntos de Control de la Fase G1 del Ciclo Celular , Luciferasas , Imagen Óptica/métodos , Animales , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Estudios de Factibilidad , Fluorouracilo , Genes Reporteros , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Piperazinas , Piridinas , Proteínas Recombinantes de Fusión
3.
Clin Exp Vaccine Res ; 8(2): 89-93, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31406689

RESUMEN

In order to develop a successful vaccine against deadly diseases with a wide range of antigenic diversity, an in-depth knowledge of the molecules and signaling mechanisms between the vaccine candidates and immune cells is required. Therefore, monitoring vaccine components, such as antigen or adjuvants, and immune cell dynamics at the vaccination site or draining lymph nodes can provide important information to understand more about the vaccine response. This review briefly introduces and describes various non-invasive molecular imaging methods for visualizing immune cell dynamics after vaccination.

4.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-763373

RESUMEN

In order to develop a successful vaccine against deadly diseases with a wide range of antigenic diversity, an in-depth knowledge of the molecules and signaling mechanisms between the vaccine candidates and immune cells is required. Therefore, monitoring vaccine components, such as antigen or adjuvants, and immune cell dynamics at the vaccination site or draining lymph nodes can provide important information to understand more about the vaccine response. This review briefly introduces and describes various non-invasive molecular imaging methods for visualizing immune cell dynamics after vaccination.


Asunto(s)
Variación Antigénica , Ganglios Linfáticos , Imagen Molecular , Vacunación , Vacunas
5.
Am J Nucl Med Mol Imaging ; 2(4): 418-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145359

RESUMEN

Platinum based drugs are widely used to treat various types of cancers by inducing DNA damage mediated cytotoxicity. However, acquirement of chemoresistance towards platinum based drugs is a common phenomenon and a major hurdle in combating the relapse of the disease. Oncogenesis and chemoresistance are multifactorial maladies which often involve deregulation of one of the prime cell survival pathways, the PI3K/Akt/mTOR signalling cascade. The genetic alterations related to this pathway are often responsible for initiation and/or maintenance of carcinogenesis. Molecular components of this pathway are long being recognized as major targets for therapeutic intervention and are now also have emerged as potential tools for diagnosis of cancer. To develop novel therapeutics against the key molecules of PI3K pathway, stringent validation is required using both in-vitro and in-vivo models. Repetitive and non-invasive molecular imaging techniques, a relatively recent field in biomedical imaging hold great promises for monitoring such diagnosis and therapy. In this review, we first introduced the PI3K/Akt/mTOR pathway and its role in acquirement of chemoresistance in various cancers. Further we described how non-invasive molecular imaging approaches are sought to use this PI3K signalling axis for the therapeutics and diagnosis. A theranostic approach using various imaging modalities should be the future of PI3K signalling based drug development venture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA