Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275501

RESUMEN

This study used an odor sensing system with a 16-channel electrochemical sensor array to measure beef odors, aiming to distinguish odors under different storage days and processing temperatures for quality monitoring. Six storage days ranged from purchase (D0) to eight days (D8), with three temperature conditions: no heat (RT), boiling (100 °C), and frying (180 °C). Gas chromatography-mass spectrometry (GC-MS) analysis showed that odorants in the beef varied under different conditions. Compounds like acetoin and 1-hexanol changed significantly with the storage days, while pyrazines and furans were more detectable at higher temperatures. The odor sensing system data were visualized using principal component analysis (PCA) and uniform manifold approximation and projection (UMAP). PCA and unsupervised UMAP clustered beef odors by storage days but struggled with the processing temperatures. Supervised UMAP accurately clustered different temperatures and dates. Machine learning analysis using six classifiers, including support vector machine, achieved 57% accuracy for PCA-reduced data, while unsupervised UMAP reached 49.1% accuracy. Supervised UMAP significantly enhanced the classification accuracy, achieving over 99.5% with the dimensionality reduced to three or above. Results suggest that the odor sensing system can sufficiently enhance non-destructive beef quality and safety monitoring. This research advances electronic nose applications and explores data downscaling techniques, providing valuable insights for future studies.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Odorantes , Análisis de Componente Principal , Temperatura , Odorantes/análisis , Bovinos , Animales , Cromatografía de Gases y Espectrometría de Masas/métodos , Almacenamiento de Alimentos/métodos , Nariz Electrónica , Carne Roja/análisis , Máquina de Vectores de Soporte
2.
Ultrasonics ; 145: 107468, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276633

RESUMEN

Variable thickness structures are prevalent in aircraft, ships, and other machines, necessitating numerous sensors for health monitoring to reduce safety hazards. This paper presents a guided wave multi-frequency localization method based on frequency-dependent velocity anisotropy. This method achieves damage localization in variable-thickness structures with a pair of sensors and can effectively reduce the number of sensors used for monitoring. Variations in structural thickness cause a gradient in guided wave velocity that bends the propagation path. Different thickness variations with different directions cause wave velocity anisotropy. As a result, variations in thickness cause possible damage loci determined by echo time to deviate from an elliptical shape. Because the velocity anisotropy is frequency-dependent, damage loci at different frequencies are close but do not overlap and intersect only at the damage location. So, the multi-frequency method can increase the damage information acquired by a single pair of sensors, enabling damage localization. Experimental validation was conducted on a steel plate with linearly varying thicknesses. The feasibility of the multi-frequency localization method was verified by successfully locating the damage at three different locations using a pair of receiver-excitation sensors. In addition, the experiments demonstrated the capability of this multi-frequency method in improving the localization accuracy of sensor networks. The method has potential applications in monitoring systems lightweight, phased arrays, and imaging enhancement.

3.
Forensic Sci Int ; 364: 112227, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39278154

RESUMEN

Hyperspectral imaging (HSI) has become a crucial innovation in forensic science, particularly for analysing bodily fluids. This advanced technology captures both spectral and spatial data across a wide spectrum of wavelengths, offering comprehensive insights into the composition and distribution of bodily fluids found at crime scenes. In this review, we delve into the forensic applications of HSI, emphasizing its role in detecting, identifying, and distinguishing various bodily fluids such as blood, saliva, urine, vaginal fluid, semen, and menstrual blood. We examine the benefits of HSI compared to traditional methods, noting its non-destructive approach, high sensitivity, and capability to differentiate fluids even in complex mixtures. Additionally, we discuss recent advancements in HSI technology and their potential to enhance forensic investigations. This review highlights the importance of HSI as a valuable tool in forensic science, opening new pathways for improving the accuracy and efficiency of crime scene analyses.

4.
Sci Rep ; 14(1): 18861, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143263

RESUMEN

The microstructure of concrete can be affected by many factors, from non-destructive environmental factors through to destructive damage induced by transient stresses. Coda wave interferometry is a technique that is sensitive enough to detect weak changes within concrete by evaluating the ultrasonic signal perturbation compared to a reference state. As concrete microstructure is sensitive to many factors, it is important to separate their contributions to the observables. In this study, we characterize the relationships between the concrete elastic and inelastic properties, and temperature and relative humidity. We confirm previous theoretical studies that found a linear relationship between temperature changes and velocity variation of the ultrasonic waves for a given concrete mix, and provide scaling factors per Kelvin for multiple settings. We also confirm an anti-correlation with relative humidity using long-term conditioning. Furthermore, we explore beyond the existing studies to establish the relationship linking humidity and temperature changes to ultrasonic wave attenuation.

5.
Food Res Int ; 192: 114758, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147491

RESUMEN

The geographical origin of Panax ginseng significantly influences its nutritional value and chemical composition, which in turn affects its market price. Traditional methods for analyzing these differences are often time-consuming and require substantial quantities of reagents, rendering them inefficient. Therefore, hyperspectral imaging (HSI) in conjunction with X-ray technology were used for the swift and non-destructive traceability of Panax ginseng origin. Initially, outlier samples were effectively rejected by employing a combined isolated forest algorithm and density peak clustering (DPC) algorithm. Subsequently, random forest (RF) and support vector machine (SVM) classification models were constructed using hyperspectral spectral data. These models were further optimized through the application of 72 preprocessing methods and their combinations. Additionally, to enhance the model's performance, four variable screening algorithms were employed: SelectKBest, genetic algorithm (GA), least absolute shrinkage and selection operator (LASSO), and permutation feature importance (PFI). The optimized model, utilizing second derivative, auto scaling, permutation feature importance, and support vector machine (2nd Der-AS-PFI-SVM), achieved a prediction accuracy of 93.4 %, a Kappa value of 0.876, a Brier score of 0.030, an F1 score of 0.932, and an AUC of 0.994 on an independent prediction set. Moreover, the image data (including color information and texture information) extracted from color and X-ray images were used to construct classification models and evaluate their performance. Among them, the SVM model constructed using texture information from X -ray images performed the best, and it achieved a prediction accuracy of 63.0 % on the validation set, with a Brier score of 0.181, an F1 score of 0.518, and an AUC of 0.553. By implementing mid-level fusion and high-level data fusion based on the Stacking strategy, it was found that the model employing a high-level fusion of hyperspectral spectral information and X-ray images texture information significantly outperformed the model using only hyperspectral spectral information. This advanced model attained a prediction accuracy of 95.2 %, a Kappa value of 0.912, a Brier score of 0.027, an F1 score of 0.952, and an AUC of 0.997 on the independent prediction set. In summary, this study not only provides a novel technical path for fast and non-destructive traceability of Panax ginseng origin, but also demonstrates the great potential of the combined application of HSI and X-ray technology in the field of traceability of both medicinal and food products.


Asunto(s)
Algoritmos , Imágenes Hiperespectrales , Panax , Máquina de Vectores de Soporte , Panax/clasificación , Panax/química , Imágenes Hiperespectrales/métodos , Luz , Rayos X
6.
Sensors (Basel) ; 24(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39204875

RESUMEN

A scanning acoustic microscopy (SAM) system is a common non-destructive instrument which is used to evaluate the material quality in scientific and industrial applications. Technically, the tested sample is immersed in water during the scanning process. Therefore, a robot arm is incorporated into the SAM system to transfer the sample for in-line inspection, which makes the system complex and increases time consumption. The main aim of this study is to develop a novel water probe for the SAM system, that is, a waterstream. During the scanning process, water was supplied using a waterstream instead of immersing the sample in the water, which leads to a simple design of an automotive SAM system and a reduction in time consumption. In addition, using a waterstream in the SAM system can avoid contamination of the sample due to immersion in water for long-time scanning. Waterstream was designed based on the measured focal length calculation of the transducer and simulated to investigate the internal flow characteristics. To validate the simulation results, the waterstream was prototyped and applied to the TSAM-400 and W-FSAM traditional and fast SAM systems to successfully image some samples such as carbon fiber-reinforced polymers, a printed circuit board, and a 6-inch wafer. These results demonstrate the design method of the water probe applied to the SAM system.

7.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204901

RESUMEN

High-strength bolts are crucial load-bearing components of wind turbine towers. They are highly susceptible to fatigue cracks over long-term service and require timely detection. However, due to the structural complexity and hidden nature of the cracks in wind turbine tower bolts, the small size of the cracks, and their variable propagation directions, detection signals carrying crack information are often drowned out by dense thread signals. Existing non-destructive testing methods are unable to quickly and accurately characterize small cracks at the thread roots. Therefore, we propose an ultrasonic phased array element arrangement method based on the Fermat spiral array. This method can greatly increase the fill rate of the phased array with small element spacing while reducing the effects of grating and sidelobes, thereby achieving high-energy excitation and accurate imaging with the ultrasonic phased array. This has significant theoretical and engineering application value for ensuring the safe and reliable service of key wind turbine components and for promoting the technological development of the wind power industry.

8.
Sensors (Basel) ; 24(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39205048

RESUMEN

Pore and crack formation in parts produced by additive manufacturing (AM) processes, such as laser powder bed fusion, is one of the issues associated with AM technology. Surface and subsurface cracks and pores are induced during the printing process, undermining the printed part durability. In-situ detection of defects will enable the real-time or intermittent control of the process, resulting in higher product quality. In this paper, a new eddy current-based probe design is proposed to detect these defects in parts with various defects that mimic pores and cracks in additively manufactured parts. Electromagnetic finite element analyses were carried out to optimize the probe geometry, followed by fabricating a prototype. Artificial defects were seeded in stainless steel plates to assess the feasibility of detecting various flaws with different widths and lengths. The smallest defect detected had a 0.17 mm radius for blind holes and a 0.43 mm notch with a 5 mm length. All the defects were 0.5 mm from the surface, and the probe was placed on the back surface of the defects. The surface roughness of the tested samples was less than 2 µm. The results show promise for detecting defects, indicating a potential application in AM.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124816, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39032232

RESUMEN

The variety and quality of corn seeds are crucial factors affecting crop yield and farmers' economic benefits. This study adopts an innovative method based on a hyperspectral imaging system combined with stacked ensemble learning, aiming to achieve varieties classification and mildew detection of sweet-waxy corn seeds. First, data interference is eliminated by extracting the spectral and texture information of each corn sample and preprocessing the data. Secondly, a stacked ensemble learning model (Stack) was constructed by stacking base models and meta-models. Its results were compared with those of the base models, including Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Random Forest (RF).Finally, the overall performance of the model is improved through the information fusion strategy of hyperspectral data and texture information. The research results indicate that the GBDT-Stack model, which integrates spectral and texture data, demonstrated optimal performance in the comprehensive classification of both corn seed varieties and mold detection. On the test set, the model achieved an average prediction accuracy of 97.01%. Specifically, the model achieved a test set accuracy ranging from 94.49% to 97.58% for different corn seed varieties and a test set accuracy of 98.89% for mildew detection. This model not only classifies corn seed varieties but also accurately detects mildew, demonstrating its wide applicability. The method has huge potential and is of great significance for improving crop yield and quality.


Asunto(s)
Semillas , Zea mays , Zea mays/microbiología , Zea mays/química , Semillas/microbiología , Semillas/química , Enfermedades de las Plantas/microbiología , Aprendizaje Automático , Imágenes Hiperespectrales/métodos
10.
Materials (Basel) ; 17(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063726

RESUMEN

Combinative methodologies have the potential to address the drawbacks of unimodal non-destructive testing and evaluation (NDT & E) when inspecting multilayer structures. The aim of this study is to investigate the integration of information gathered via phased-array ultrasonic testing (PAUT) and pulsed thermography (PT), addressing the challenges posed by surface-level anomalies in PAUT and the limited deep penetration in PT. A center-of-mass-based registration method was proposed to align shapeless inspection results in consecutive insertions. Subsequently, the aligned inspection images were merged using complementary techniques, including maximum, weighted-averaging, depth-driven combination (DDC), and wavelet decomposition. The results indicated that although individual inspections may have lower mean absolute error (MAE) ratings than fused images, the use of complementary fusion improved defect identification in the total number of detections across numerous layers of the structure. Detection errors are analyzed, and a tendency to overestimate defect sizes is revealed with individual inspection methods. This study concludes that complementary fusion provides a more comprehensive understanding of overall defect detection throughout the thickness, highlighting the importance of leveraging multiple modalities for improved inspection outcomes in structural analysis.

11.
Materials (Basel) ; 17(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063860

RESUMEN

The detection of defects in aluminium alloys using eddy current testing (ECT) can be restricted by higher electrical conductivity. Considering the occurrence of discontinuities during the selective laser melting (SLM) process, checking the ability of the ECT method for the mentioned purpose could bring simple and fast material identification. The research described here is focused on the application of three ECT probes with different frequency ranges (0.3-100 kHz overall) for the identification of artificial defects in SLM aluminium alloy AlSi10Mg. Standard penetration depth for the mentioned frequency range and identification abilities of used probes expressed through lift-off diagrams precede the main part of the research. Experimental specimens were designed in four groups to check the signal sensitivity to variations in the size and depth of cavities. The signal behavior was evaluated according to notch-type and hole-type artificial defects' presence on the surface of the material and spherical cavities in subsurface layers, filled and unfilled by unmolten powder. The maximal penetration depth of the identified defect, the smallest detectable notch-type and hole-type artificial defect, the main characteristics of signal curves based on defect properties and circumstances for distinguishing between the application of measurement regime were stated. These conclusions represent baselines for the creation of ECT methodology for the defectoscopy of evaluated material.

12.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000928

RESUMEN

In this paper, we present a bolt preload monitoring system, including the system architecture and algorithms. We show how Finite Element Method (FEM) simulations aided the design and how we processed signals to achieve experimental validation. The preload is measured using a Piezoelectric Micromachined Ultrasonic Transducer (PMUT) in pulse-echo mode, by detecting the Change in Time-of-Flight (CTOF) of the acoustic wave generated by the PMUT, between no-load and load conditions. We performed FEM simulations to analyze the wave propagation inside the bolt and understand the effect of different configurations and parameters, such as transducer bandwidth, transducer position (head/tip), presence or absence of threads, as well as the frequency of the acoustic waves. In order to couple the PMUT to the bolt, a novel assembly process involving the deposition of an elastomeric acoustic impedance matching layer was developed. We achieved, for the first time with PMUTs, an experimental measure of bolt preload from the CTOF, with a good signal-to-noise ratio. Due to its low cost and small size, this system has great potential for use in the field for continuous monitoring throughout the operative life of the bolt.

13.
Ultrasonics ; 142: 107357, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838609

RESUMEN

Composite laminates are widely used in various fields, but their structures are prone to cracks and damage. Due to the difference in angles of the instantaneous direction of the wave front propagation and the direction of the energy flow in an anisotropic material, the use of Lamb waves for damage localization in composite laminates is a challenging task. Establishing the wave front shape equation can overcome the difficulty of damage localization caused by anisotropy, but this usually requires a priori knowledge of the acoustic velocity distribution of the laminates, which is not convenient for efficient damage localization. In this paper, a damage localization method based on wave front shapes for composite laminates without any knowledge of the velocity profile is presented. Numerical simulation and experimental results show that the proposed method works. This method shows good damage localization accuracy and has broad application prospects in non-destructive testing for plate structures with strong anisotropy.

14.
Ultrasonics ; 142: 107382, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943732

RESUMEN

Non-destructive testing (NDT) is a technique for inspecting materials and their defects without causing damage to the tested components. Phased array ultrasonic testing (PAUT) has emerged as a hot topic in industrial NDT applications. Currently, the collection of ultrasound data is mostly automated, while the analysis of the data is still predominantly carried out manually. Manual analysis of scan image defects is inefficient and prone to instability, prompting the need for computer-based solutions. Deep learning-based object detection methods have shown promise in addressing such challenges recently. This approach typically demands a substantial amount of high-resolution, well-annotated training data, which is challenging to obtain in NDT. Consequently, it becomes difficult to detect low-resolution images and defects with varying positional sizes. This work proposes improvements based on the state-of-the-art YOLOv8 algorithm to enhance the accuracy and efficiency of defect detection in phased-array ultrasonic testing. The space-to-depth convolution (SPD-Conv) is imported to replace strided convolution, mitigating information loss during convolution operations and improving detection performance on low-resolution images. Additionally, this paper constructs and incorporates the bi-level routing and spatial attention module (BRSA) into the backbone, generating multiscale feature maps with richer details. In the neck section, the original structure is replaced by the asymptotic feature pyramid network (AFPN) to reduce model parameters and computational complexity. After testing on public datasets, in comparison to YOLOv8 (the baseline), this algorithm achieves high-quality detection of flat bottom holes (FBH) and aluminium blocks on the simulated dataset. More importantly, for the challenging-to-detect defect side-drilled holes (SDH), it achieves F1 scores (weighted average of precision and recall) of 82.50% and intersection over union (IOU) of 65.96%, representing an improvement of 17.56% and 0.43%. On the experimental dataset, the F1 score and IOU for FBH reach 75.68% (an increase of 9.01%) and 83.79%, respectively. Simultaneously, the proposed algorithm demonstrates robust performance in the presence of external noise, while maintaining exceptionally high computational efficiency and inference speed. These experimental results validate the high detection performance of the proposed intelligent defect detection algorithm for ultrasonic images, which contributes to the advancement of the smart industry.

15.
Theriogenology ; 226: 57-67, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850858

RESUMEN

The present investigation was aimed at predicting a still (i.e., dead) vs. live embryo within a hatching goose egg by measuring the eggshell cooling rate. For this, we daily measured the temperature (T) values on the shell surface of goose eggs after they were removed from the incubator and during further natural cooling. T was recorded every 0.5 h for further 1.5 h of cooling. It was possible to recognize eggs with dead embryos using the combination of T, egg weight (W), and surface area (S). The resultant indicator (TS/W) was called specific temperature index (STI). The mathematical relationship using STI measurements between Days 8-13 facilitated 80 % correct identification of the eggs with dead embryos. Additionally, we derived mathematical dependencies for shell weight (Ws) and thickness (t) by utilizing the values of W, egg volume (V), S, the average T of all measurements taken, as well as the drop in T during 1.5 h of natural cooling. The key advantage of these parameters was their measurement and/or calculation by applying non-destructive methods. The integrated application of these parameters resulted in achieving high calculation accuracy as judged by correlation coefficients of 0.908 for Ws and 0.593 for t. These novel mathematical models have the potential to decrease hatching waste by predicting embryo viability. Our research will add to a toolkit for non-invasive egg assessment that is useful in the poultry industry, research on eggs, and engineering.


Asunto(s)
Cáscara de Huevo , Gansos , Temperatura , Animales , Cáscara de Huevo/fisiología , Gansos/fisiología , Gansos/embriología , Óvulo/fisiología , Modelos Biológicos
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124589, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850826

RESUMEN

This study utilized hyperspectral imaging technology combined with mathematical modeling methods to predict the protein content of rice grains. Firstly, the Kjeldahl method was used to determine the protein content of rice grains, and different preprocessing techniques were applied to the spectral information. Then, a prediction model for rice grain protein content was developed by combining the spectral data with the protein content. After performing multiplicative scatter correction (MSC) preprocessing and selecting feature wavelengths based on successive projections algorithm (SPA), the multivariate linear regression (MLR) model showed the best prediction performance, with a calibration set R2C of 0.9393, a validation set R2V of 0.8998, an RMSEV of 0.1725, and an RPD of 3.16. Finally, the quantitative protein content model was mapped pixel by pixel to visualize the distribution of rice protein, providing possibilities for non-destructive protein content detection.


Asunto(s)
Imágenes Hiperespectrales , Oryza , Proteínas de Plantas , Oryza/química , Imágenes Hiperespectrales/métodos , Proteínas de Plantas/análisis , Algoritmos , Grano Comestible/química , Modelos Lineales
17.
Environ Res ; 258: 119248, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823615

RESUMEN

To ensure the structural integrity of concrete and prevent unanticipated fracturing, real-time monitoring of early-age concrete's strength development is essential, mainly through advanced techniques such as nano-enhanced sensors. The piezoelectric-based electro-mechanical impedance (EMI) method with nano-enhanced sensors is emerging as a practical solution for such monitoring requirements. This study presents a strength estimation method based on Non-Destructive Testing (NDT) Techniques and Long Short-Term Memory (LSTM) and artificial neural networks (ANNs) as hybrid (NDT-LSTMs-ANN), including several types of concrete strength-related agents. Input data includes water-to-cement rate, temperature, curing time, and maturity based on interior temperature, allowing experimentally monitoring the development of concrete strength from the early steps of hydration and casting to the last stages of hardening 28 days after the casting. The study investigated the impact of various factors on concrete strength development, utilizing a cutting-edge approach that combines traditional models with nano-enhanced piezoelectric sensors and NDT-LSTMs-ANN enhanced with nanotechnology. The results demonstrate that the hybrid provides highly accurate concrete strength estimation for construction safety and efficiency. Adopting the piezoelectric-based EMI technique with these advanced sensors offers a viable and effective monitoring solution, presenting a significant leap forward for the construction industry's structural health monitoring practices.


Asunto(s)
Materiales de Construcción , Impedancia Eléctrica , Aprendizaje Automático , Redes Neurales de la Computación , Materiales de Construcción/análisis , Nanotecnología/instrumentación , Nanotecnología/métodos , Ensayo de Materiales/métodos
18.
Materials (Basel) ; 17(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893781

RESUMEN

With additive manufacturing (AM) processes such as Wire Arc Additive Manufacturing (WAAM), components with complex shapes or with functional properties can be produced, with advantages in the areas of resource conservation, lightweight construction, and load-optimized production. However, proving component quality is a challenge because it is not possible to produce 100% defect-free components. In addition to this, statistically determined fluctuations in the wire quality, gas flow, and their interaction with process parameters result in a quality of the components that is not 100% reproducible. Complex testing procedures are therefore required to demonstrate the quality of the components, which are not cost-effective and lead to less efficiency. As part of the project "3DPrintFEM", a sound emission analysis is used to evaluate the quality of AM components. Within the scope of the project, an approach was being developed to determine the quality of an AM part dependent not necessarily on its geometry. Samples were produced from WAAM, which were later cut and milled to precision. To determine the frequencies, the samples were put through a resonant frequency test (RFM). The unwanted modes were then removed from the spectrum produced by the experiments by comparing it with FEM simulations. Later, defects were introduced in experimental samples in compliance with the ISO 5817 guidelines. In order to create a database of frequencies related to the degree of the sample defect, they were subjected to RFM. The database was further augmented through frequencies from simulations performed on samples with similar geometries, and, hence, a training set was generated for an algorithm. A machine-learning algorithm based on regression modelling was trained based on the database to sort samples according to the degree of flaws in them. The algorithm's detectability was evaluated using samples that had a known level of flaws which forms the test dataset. Based on the outcome, the algorithm will be integrated into an equipment developed in-house to monitor the quality of samples produced, thereby having an in-house quality assessment routine. The equipment shall be less expensive than conventional acoustic equipment, thus helping the industry cut costs when validating the quality of their components.

19.
Materials (Basel) ; 17(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893920

RESUMEN

Both microstructure and stress affect the structure and kinematic properties of magnetic domains. In fact, microstructural and stress variations often coexist. However, the coupling of microstructure and stress on magnetic domains is seldom considered in the evaluation of microstructural characteristics. In this investigation, Magnetic incremental permeability (MIP) and magnetic Barkhausen noise (MBN) techniques are used to study the coupling effect of characteristic microstructure and stress on the reversible and irreversible motions of magnetic domains, and the quantitative relationship between microstructure and magnetic domain characteristics is established. Considering the coupling effect of microstructure and stress on magnetic domains, a patterned characterization method of microstructure and stress is innovatively proposed. Pattern recognition based on the Multi-layer Perceptron (MLP) model is realized for microstructure and stress with an accuracy rate higher than 97%. The results show that the pattern recognition accuracy of magnetic domain features and micro-magnetic features simultaneously as input parameters is higher than that of micro-magnetic features alone as input parameters.

20.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894194

RESUMEN

Measuring temperature inside chemical reactors is crucial to ensuring process control and safety. However, conventional methods face a number of limitations, such as the invasiveness and the restricted dynamic range. This paper presents a novel approach using ultrasound transducers to enable accurate temperature measurements. Our experiments, conducted within a temperature range of 28.8 to 83.8 °C, reveal a minimal temperature accuracy of 98.6% within the critical zone spanning between 70.5 and 75 °C, and an accuracy of over 99% outside this critical zone. The experiments focused on a homogeneous environment of distilled water within a stainless-steel tank. This approach will be extended in a future research in order to diversify the experimental media and non-uniform environments, while promising broader applications in chemical process monitoring and control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA