Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Yi Chuan ; 46(9): 677-689, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275868

RESUMEN

The sex determination in mammals refers to the development of an initial bipotential organ, termed the bipotential gonad/genital ridge, into either a testis or an ovary at the early stages of embryonic development, under the precise regulation of transcription factors. SOX9 (SRY-box transcription factor 9) is a multifunctional transcription factor in mammalian development and plays a critical role in sex determination and subsequent male reproductive organs development. Recent studies have shown that several enhancers upstream of SOX9 also play an important role in the process of sex determination. In this review, we summarize the progress on the role of SOX9 and its gonadal enhancers in sex determination. This review will facilitate to understand the regulatory mechanism of sex determination of SOX9 and provides a theoretical basis for the further development of animal sex manipulation technologies.


Asunto(s)
Mamíferos , Factor de Transcripción SOX9 , Procesos de Determinación del Sexo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Procesos de Determinación del Sexo/genética , Humanos , Mamíferos/genética , Masculino , Femenino , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica
2.
Gene ; 926: 148644, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38851366

RESUMEN

The non-coding regions of the mitochondrial DNAs (mtDNAs) of hares, rabbits, and pikas (Lagomorpha) contain short (∼20 bp) and long (130-160 bp) tandem repeats, absent in related mammalian orders. In the presented study, we provide in-depth analysis for mountain hare (Lepus timidus) and brown hare (L. europaeus) mtDNA non-coding regions, together with a species- and population-level analysis of tandem repeat variation. Mountain hare short tandem repeats (SRs) as well as other analyzed hare species consist of two conserved 10 bp motifs, with only brown hares exhibiting a single, more variable motif. Long tandem repeats (LRs) also differ in sequence and copy number between species. Mountain hares have four to seven LRs, median value five, while brown hares exhibit five to nine LRs, median value six. Interestingly, introgressed mountain hare mtDNA in brown hares obtained an intermediate LR length distribution, with median copy number being the same as with conspecific brown hare mtDNA. In contrast, transfer of brown hare mtDNA into cultured mtDNA-less mountain hare cells maintained the original LR number, whereas the reciprocal transfer caused copy number instability, suggesting that cellular environment rather than the nuclear genomic background plays a role in the LR maintenance. Due to their dynamic nature and separation from other known conserved sequence elements on the non-coding region of hare mitochondrial genomes, the tandem repeat elements likely to represent signatures of ancient genetic rearrangements. clarifying the nature and dynamics of these rearrangements may shed light on the possible role of NCR repeated elements in mitochondria and in species evolution.


Asunto(s)
ADN Mitocondrial , Evolución Molecular , Genoma Mitocondrial , Liebres , Polimorfismo Genético , Especificidad de la Especie , Secuencias Repetidas en Tándem , Animales , Liebres/genética , Secuencias Repetidas en Tándem/genética , ADN Mitocondrial/genética , Filogenia
3.
Open Biol ; 14(4): 240007, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565160

RESUMEN

Functional regions that regulate biological phenomena are interspersed throughout eukaryotic genomes. The most definitive approach for identifying such regions is to confirm the phenotype of cells or organisms in which specific regions have been mutated or removed from the genome. This approach is invaluable for the functional analysis of genes with a defined functional element, the protein-coding sequence. By contrast, no functional analysis platforms have been established for the study of cis-elements or microRNA cluster regions consisting of multiple microRNAs with functional overlap. Whole-genome mutagenesis approaches, such as via N-ethyl-N-nitrosourea and gene trapping, have greatly contributed to elucidating the function of coding genes. These methods almost never induce deletions of genomic regions or multiple mutations within a narrow region. In other words, cis-elements and microRNA clusters cannot be effectively targeted in such a manner. Herein, we established a novel region-specific random mutagenesis method named CRISPR- and transposase-based regional mutagenesis (CTRL-mutagenesis). We demonstrate that CTRL-mutagenesis randomly induces diverse mutations within target regions in murine embryonic stem cells. Comparative analysis of mutants harbouring subtly different mutations within the same region would facilitate the further study of cis-element and microRNA clusters.


Asunto(s)
Edición Génica , MicroARNs , Animales , Ratones , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Mutagénesis , MicroARNs/genética
4.
Curr Pharm Biotechnol ; 25(15): 1915-1938, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38310451

RESUMEN

Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.


Asunto(s)
Neoplasias Esofágicas , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Humanos , Neoplasias Esofágicas/genética , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad/genética , MicroARNs/genética , Regulación Neoplásica de la Expresión Génica , Animales , Sitios de Carácter Cuantitativo/genética
5.
bioRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260267

RESUMEN

A.fumigatus is a deadly fungal pathogen, responsible for >400,000 infections/year and high mortality rates. A. fumigatus strains exhibit variation in infection-relevant traits, including in their virulence. However, most A. fumigatus protein-coding genes, including those that modulate its virulence, are shared between A. fumigatus strains and closely related non-pathogenic relatives. We hypothesized that A. fumigatus genes exhibit substantial genetic variation in the non-coding regions immediately upstream to the start codons of genes, which could reflect differences in gene regulation between strains. To begin testing this hypothesis, we identified 5,812 single-copy orthologs across the genomes of 263 A. fumigatus strains. A. fumigatus non-coding regions showed higher levels of sequence variation compared to their corresponding protein-coding regions. Specifically, we found that 1,274 non-coding regions exhibited <75% nucleotide sequence similarity (compared to 928 protein-coding regions) and 3,721 non-coding regions exhibited between 75% and 99% similarity (compared to 2,482 protein-coding regions) across strains. Only 817 non-coding regions exhibited ≥99% sequence similarity compared to 2,402 protein-coding regions. By examining 2,482 genes whose protein-coding sequence identity scores ranged between 75% and 99%, we identified 478 total genes with signatures of positive selection only in their non-coding regions and 65 total genes with signatures only in their protein-coding regions. 28 of the 478 non-coding regions and 5 of the 65 protein-coding regions under selection are associated with genes known to modulate A. fumigatus virulence. Non-coding region variation between A. fumigatus strains included single nucleotide polymorphisms and insertions or deletions of at least a few nucleotides. These results show that non-coding regions of A. fumigatus genes harbor greater sequence variation than protein-coding regions, raising the hypothesis that this variation may contribute to A. fumigatus phenotypic heterogeneity.

6.
BMC Genomics ; 24(1): 601, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817060

RESUMEN

BACKGROUND: Deep-intronic variants that alter RNA splicing were ineffectively evaluated in the search for the cause of genetic diseases. Determination of such pathogenic variants from a vast number of deep-intronic variants (approximately 1,500,000 variants per individual) represents a technical challenge to researchers. Thus, we developed a Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS) to easily detect pathogenic deep-intronic variants. RESULTS: PDIVAS was trained on an ensemble machine-learning algorithm to classify pathogenic and benign variants in a curated dataset. The dataset consists of manually curated pathogenic splice-altering variants (SAVs) and commonly observed benign variants within deep introns. Splicing features and a splicing constraint metric were used to maximize the predictive sensitivity and specificity, respectively. PDIVAS showed an average precision of 0.92 and a maximum MCC of 0.88 in classifying these variants, which were the best of the previous predictors. When PDIVAS was applied to genome sequencing analysis on a threshold with 95% sensitivity for reported pathogenic SAVs, an average of 27 pathogenic candidates were extracted per individual. Furthermore, the causative variants in simulated patient genomes were more efficiently prioritized than the previous predictors. CONCLUSION: Incorporating PDIVAS into variant interpretation pipelines will enable efficient detection of disease-causing deep-intronic SAVs and contribute to improving the diagnostic yield. PDIVAS is publicly available at https://github.com/shiro-kur/PDIVAS .


Asunto(s)
Empalme del ARN , Humanos , Intrones , Virulencia , Mutación
7.
Int J Mol Sci ; 24(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37298602

RESUMEN

Peridinin-containing dinoflagellate plastomes are predominantly encoded in nuclear genomes, with less than 20 essential chloroplast proteins carried on "minicircles". Each minicircle generally carries one gene and a short non-coding region (NCR) with a median length of approximately 400-1000 bp. We report here differential nuclease sensitivity and two-dimensional southern blot patterns, suggesting that dsDNA minicircles are in fact the minor forms, with substantial DNA:RNA hybrids (DRHs). Additionally, we observed large molecular weight intermediates, cell-lysate-dependent NCR secondary structures, multiple bidirectional predicted ssDNA structures, and different southern blot patterns when probed with different NCR fragments. In silico analysis suggested the existence of substantial secondary structures with inverted repeats (IR) and palindrome structures within the initial ~650 bp of the NCR sequences, in accordance with conversion event(s) outcomes with PCR. Based on these findings, we propose a new transcription-templating-translation model, which is associated with cross-hopping shift intermediates. Since dinoflagellate chloroplasts are cytosolic and lack nuclear envelope breakdown, the dynamic DRH minicircle transport could have contributed to the spatial-temporal dynamics required for photosystem repair. This represents a paradigm shift from the previous understanding of "minicircle DNAs" to a "working plastome", which will have significant implications for its molecular functionality and evolution.


Asunto(s)
Dinoflagelados , ARN , Dinoflagelados/genética , ADN , Cloroplastos/genética , Análisis de Secuencia de ADN
8.
Genes (Basel) ; 14(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36833174

RESUMEN

Single nucleotide polymorphisms (SNPs) are associated with many diseases including neurological disorders, heart diseases, diabetes, and different types of cancers. In the context of cancer, the variations within non-coding regions, including UTRs, have gained utmost importance. In gene expression, translational regulation is as important as transcriptional regulation for the normal functioning of cells; modification in normal functions can be associated with the pathophysiology of many diseases. UTR-localized SNPs in the PRKCI gene were evaluated using the PolymiRTS, miRNASNP, and MicroSNIper for association with miRNAs. Furthermore, the SNPs were subjected to analysis using GTEx, RNAfold, and PROMO. The genetic intolerance to functional variation was checked through GeneCards. Out of 713 SNPs, a total of thirty-one UTR SNPs (three in 3' UTR region and twenty-nine in 5' UTR region) were marked as ≤2b by RegulomeDB. The associations of 23 SNPs with miRNAs were found. Two SNPs, rs140672226 and rs2650220, were significantly linked with expression in the stomach and esophagus mucosa. The 3' UTR SNPs rs1447651774 and rs115170199 and the 5' UTR region variants rs778557075, rs968409340, and 750297755 were predicted to destabilize the mRNA structure with substantial change in free energy (∆G). Seventeen variants were predicted to have linkage disequilibrium with various diseases. The SNP rs542458816 in 5' UTR was predicted to put maximum influence on transcription factor binding sites. Gene damage index(GDI) and loss of function (o:e) ratio values for PRKCI suggested that the gene is not tolerant to loss of function variants. Our results highlight the effects of 3' and 5' UTR SNP on miRNA, transcription and translation of PRKCI. These analyses suggest that these SNPs can have substantial functional importance in the PRKCI gene. Future experimental validation could provide further basis for the diagnosis and therapeutics of various diseases.


Asunto(s)
MicroARNs , Neoplasias , Proteína Quinasa C , Humanos , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Regulación de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , Polimorfismo de Nucleótido Simple , Proteína Quinasa C/genética
9.
Indian J Med Microbiol ; 41: 97-100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36470773

RESUMEN

PURPOSE: Hand, Foot and Mouth disease (HFMD) is a contagious pediatric viral disease caused due to enteroviruses (EV) of the family Picornaviridae. Cases of HFMD were reported from a tertiary care health centre, Udhampur, (Jammu and Kashmir), Northern India. The present study highlights the clinical and molecular virological aspects of HFMD cases. MATERIAL AND METHODS: Cases reported during August 2016-September 2017, and clinically diagnosed as HFMD of all age groups were included. Clinical, Biochemical and molecular virology aspects were compared. Clinical samples (n â€‹= â€‹50) such as vesicle swab, buccal and throat swabs were collected for enterovirus detection. EV-RNA was detected by 5'NCR based RT-PCR and genotyping by VP1 gene amplification and cycle sequencing. RESULTS: Of the cases of HFMD enrolled (n â€‹= â€‹50), highest (84%) were of children aged <5 years, presented either or both anathemas and exanthemas with prodromal symptoms (fever, irritability). Clinical presentations involved mainly oral ulcers on lips and tongue (48%). Oral erosions were either single or multiple in numbers. Exanthemas were seen on hand and palm, widely spread up to buttocks, legs, arms and trunk. Of these, six patients were found anemic. Complete blood count (CBC) indicated lymphocytosis and C-reactive protein (n â€‹= â€‹10) in children aged <5 years. EV-RNA was detected in 78% (39/50) of the clinical samples. VP1 gene based typing indicated the presence of CV-A16, CVA6 and EV-A71 types. CONCLUSIONS: The study highlights association of EVs in HFMD cases in the reported region. CV-A16, CV-A6 and EV-A71 types were reported for the first time from Udhampur (J&K), Northern India. No differences were observed in the clinical profile of EV strains detected. Circulation of the strains warrant and alarm outbreaks. More focused studies on HFMD and monitoring of viral strains is mandatory.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Lactante , Enterovirus/genética , Tipificación Molecular , Antígenos Virales/genética , India/epidemiología , ARN , China/epidemiología
10.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077109

RESUMEN

A mouse model has often been used in studies of p53 gene expression. Detailed interpretation of functional studies is, however, hampered by insufficient knowledge of the impact of mouse p53 mRNA's structure and its interactions with proteins in the translation process. In particular, the 5'-terminal region of mouse p53 mRNA is an important region which takes part in the regulation of the synthesis of p53 protein and its N-truncated isoform Δ41p53. In this work, the spatial folding of the 5'-terminal region of mouse p53 mRNA and its selected sub-fragments was proposed based on the results of the SAXS method and the RNAComposer program. Subsequently, RNA-assisted affinity chromatography was used to identify proteins present in mouse fibroblast cell lysates that are able to bind the RNA oligomer, which corresponds to the 5'-terminal region of mouse p53 mRNA. Possible sites to which the selected, identified proteins can bind were proposed. Interestingly, most of these binding sites coincide with the sites determined as accessible to hybridization of complementary oligonucleotides. Finally, the high binding affinity of hnRNP K and PCBP2 to the 5'-terminal region of mouse p53 mRNA was confirmed and their possible binding sites were proposed.


Asunto(s)
ARN Mensajero/química , Proteína p53 Supresora de Tumor/genética , Animales , Ratones , Hibridación de Ácido Nucleico , ARN Mensajero/metabolismo , Dispersión del Ángulo Pequeño , Proteína p53 Supresora de Tumor/metabolismo , Difracción de Rayos X
11.
Insects ; 13(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35886740

RESUMEN

Long non-coding regions (NCRs) and gene rearrangements are commonly seen in mitochondrial genomes of Mantodea and are primarily focused on three regions: CR-I-Q-M-ND2, COX2-K-D-ATP8, and ND3-A-R-N-S-E-F-ND5. In this study, eight complete and one nearly complete mitochondrial genomes of praying mantises were acquired for the purpose of discussing mitochondrial gene rearrangements and phylogenetic relationships within Mantodea, primarily in the newly established families Haaniidae and Gonypetidae. Except for Heterochaeta sp. JZ-2017, novel mitochondrial gene arrangements were detected in Cheddikulama straminea, Sinomiopteryx graham, Pseudovates chlorophaea, Spilomantis occipitalis. Of note is the fact that one type of novel arrangement was detected for the first time in the Cyt b-S2-ND1 region. This could be reliably explained by the tandem replication-random loss (TDRL) model. The long NCR between trnT and trnP was generally found in Iridopteryginae and was similar to the ND4L or ND6 gene. Combined with gene rearrangements and intergenic regions, the monophyly of Haaniidae was supported, whereas the paraphyly of Gonypetidae was recovered. Furthermore, several synapomorphies unique to some clades were detected that conserved block sequences between trnI and trnQ and gaps between trnT and trnP in Toxoderidae and Iridopteryginae, respectively.

12.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35349686

RESUMEN

The strength of selection varies among populations and across the genome, but the determinants of efficacy of selection remain unclear. In this study, we used whole-genome sequencing data from 467 Boechera stricta accessions to quantify the strength of selection and characterize the pattern of local adaptation. We found low genetic diversity on 0-fold degenerate sites and conserved non-coding sites, indicating functional constraints on these regions. The estimated distribution of fitness effects and the proportion of fixed substitutions suggest relaxed negative and positive selection in B. stricta. Among the four population groups, the NOR and WES groups have smaller effective population size (Ne), higher proportions of effectively neutral sites, and lower rates of adaptive evolution compared with UTA and COL groups, reflecting the effect of Ne on the efficacy of natural selection. We also found weaker selection on GC-biased sites compared with GC-conservative (unbiased) sites, suggested that GC-biased gene conversion has affected the strength of selection in B. stricta. We found mixed evidence for the role of the recombination rate on the efficacy of selection. The positive and negative selection was stronger in high-recombination regions compared with low-recombination regions in COL but not in other groups. By scanning the genome, we found different subsets of selected genes suggesting differential adaptation among B. stricta groups. These results show that differences in effective population size, nucleotide composition, and recombination rate are important determinants of the efficacy of selection. This study enriches our understanding of the roles of natural selection and local adaptation in shaping genomic variation.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Evolución Molecular , Conversión Génica , Genoma , Genómica , Selección Genética
13.
Gene ; 818: 146238, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074420

RESUMEN

The short stature homeobox-containing (SHOX) is the most frequently analysed gene in patients classified as short stature patients (ISS) or diagnosed with Leri-Weill dyschondrosteosis (LWD), Langer mesomelic dysplasia (LMD), or Madelung deformity (MD). However, clinical testing of this gene focuses primarily on single nucleotide variants (SNV) in its coding sequences and copy number variants (CNV) overlapping SHOX gene. This review summarizes the clinical impact of variants in noncoding regions of SHOX. RECENT FINDINGS: CNV extending exclusively into the regulatory elements (i.e., not interrupting the coding sequence) are found more frequently in downstream regulatory elements of SHOX. Further, duplications are more frequent than deletions. Interestingly, downstream duplications are more common than deletions in patients with ISS or LWD but no such differences exist for upstream CNV. Moreover, the presence of specific CNVs in the patient population suggests the involvement of additional unknown factors. Some of its intronic variants, notably NM_000451.3(SHOX):c.-9delG and c.-65C>A in the 5'UTR, have unclear clinical roles. However, these intronic SNV may increase the probability that other CNV will arise de novo in the SHOX gene based on homologous recombination or incorrect splicing of mRNA. SUMMARY: This review highlights the clinical impact of noncoding changes in the SHOX gene and the need to apply new technologies and genotype-phenotype correlation in their analysis.


Asunto(s)
ADN Intergénico/genética , Variación Genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Regulación de la Expresión Génica , Haploinsuficiencia/genética , Humanos , Fenotipo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36866034

RESUMEN

Invasive aspergillosis is a deadly fungal disease; more than 400,000 patients are infected worldwide each year and the mortality rate can be as high as 50-95%. Of the ~450 species in the genus Aspergillus only a few are known to be clinically relevant, with the major pathogen Aspergillus fumigatus being responsible for ~50% of all invasive mold infections. Genomic comparisons between A. fumigatus and other Aspergillus species have historically focused on protein-coding regions. However, most A. fumigatus genes, including those that modulate its virulence, are also present in other pathogenic and non-pathogenic closely related species. Our hypothesis is that differential gene regulation - mediated through the non-coding regions upstream of genes' first codon - contributes to A. fumigatus pathogenicity. To begin testing this, we compared non-coding regions upstream of the first codon of single-copy orthologous genes from the two A. fumigatus reference strains Af293 and A1163 and eight closely related Aspergillus section Fumigati species. We found that these non-coding regions showed extensive sequence variation and lack of homology across species. By examining the evolutionary rates of both protein-coding and non-coding regions in a subset of orthologous genes with highly conserved non-coding regions across the phylogeny, we identified 418 genes, including 25 genes known to modulate A. fumigatus virulence, whose non-coding regions exhibit a different rate of evolution in A. fumigatus. Examination of sequence alignments of these non-coding regions revealed numerous instances of insertions, deletions, and other types of mutations of at least a few nucleotides in A. fumigatus compared to its close relatives. These results show that closely related Aspergillus species that vary greatly in their pathogenicity exhibit extensive non-coding sequence variation and identify numerous changes in non-coding regions of A. fumigatus genes known to contribute to virulence.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-965215

RESUMEN

@#Abstract: - ( ) , Noise induced hearing loss NIHL is a hearing disorder that seriously harms the health of workers and it is a ( ) complex disease caused by environmental and genetic factors. Single nucleotide polymorphism SNP is the most common , ( ) genetic variation which is associated with the occurrence and development of NIHL. MicroRNA miRNA is a kind of small - - , - non codingsingle strandedRNA whichishighlyexpressedinthecochleaandregulatesgenesbybindingtothe3′ untranslated ( ) - regionoftargetmessengerRNA mRNA .SNPofmiRNA isthemostcommongeneticvariation.SNPinthenon codingregion, participates in gene expression regulation and phenotype generation by leading to abnormal miRNA recruitment thereby, affecting the occurrence and development of NIHL. The genetic susceptibility genes of NIHL include oxidative stress genes - singlegenedeafnessgenesandheatshockproteingenes.TheSNPinthenon codingregionisassociatedwiththesusceptibility, of NIHL. miRNA SNP has been confirmed to be involved in the development of NIHL but the correlation between different miRNASNPandNIHLisdifferent.SNPaffectsthesusceptibilityofNIHLbyaffectingtheexpressionandfunctionofmiRNA.

16.
Pathogens ; 10(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34832544

RESUMEN

Nervous necrosis virus (NNV), genus Betanodavirus, the etiological agent of the viral encephalopathy and retinopathy (VER), presents a genome with two positive-sense single-stranded RNA segments. Striped jack nervous necrosis virus (SJNNV) and red-spotted grouper nervous necrosis virus (RGNNV), together with reassortants RGNNV/SJNNV, are the betanodaviruses predominantly isolated in Southern Europe. An RGNNV/SJNNV reassortant isolated from Senegalese sole (wt160) causes high mortalities in this fish species. This virus presents differences in the sequence of the 3' non-coding region (NCR) of both segments compared to RGNNV and SJNNV reference strains. Previously, it has been reported that the reversion of two of these differences (nucleotides 1408 and 1412) in the RNA2 3'NCR to the SJNNV-type (recombinant r1408-1412) resulted in a decrease in sole mortality. In the present study, we have applied an OpenArray® to analyse the involvement of sole immune response in the virulence of several recombinants: the r1408-1412 and two recombinants, developed in the present study, harbouring mutations at positions 3073 and 3093 of RNA1 3'NCR to revert them to RGNNV-type. According to the correlation values and to the number of expressed genes, the infection with the RNA2-mutant provoked the most different immune response compared to the immune response triggered after the infection with the rest of the viruses, and the exclusive and high upregulation of genes related to the complement system. The infection with the RNA1-mutants also provoked a decrease in mortality and their replication was delayed at least 24 h compared to the wt160 replication, which could provoke the lag observed in the immune response. Furthermore, the infection with the RNA1-mutants provoked the exclusive expression of pkr and the downregulation of il17rc.

17.
Insects ; 12(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34821825

RESUMEN

The availability of next-generation sequencing (NGS) in recent years has facilitated a revolution in the availability of mitochondrial (mt) genome sequences. The mt genome is a powerful tool for comparative studies and resolving the phylogenetic relationships among insect lineages. The mt genomes of phytophagous scarabs of the subfamilies Cetoniinae and Dynastinae were under-represented in GenBank. Previous research found that the subfamily Rutelinae was recovered as a paraphyletic group because the few representatives of the subfamily Dynastinae clustered into Rutelinae, but the subfamily position of Dynastinae was still unclear. In the present study, we sequenced 18 mt genomes from Dynastinae and Cetoniinae using next-generation sequencing (NGS) to re-assess the phylogenetic relationships within Scarabaeidae. All sequenced mt genomes contained 37 sets of genes (13 protein-coding genes, 22 tRNAs, and two ribosomal RNAs), with one long control region, but the gene order was not the same between Cetoniinae and Dynastinae species. All mt genomes of Dynastinae species showed the same gene rearrangement of trnQ-NCR-trnI-trnM, whereas all mt genomes of Cetoniinae species showed the ancestral insect gene order of trnI-trnQ-trnM. Phylogenetic analyses (IQ-tree and MrBayes) were conducted using 13 protein-coding genes based on nucleotide and amino acid datasets. In the ML and BI trees, we recovered the monophyly of Rutelinae, Cetoniinae, Dynastinae, and Sericinae, and the non-monophyly of Melolonthinae. Cetoniinae was shown to be a sister clade to (Dynastinae + Rutelinae).

18.
Insects ; 12(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34357316

RESUMEN

We determined 15 complete and two nearly complete mitogenomes of Heptageniidae belonging to three subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae) and six genera (Afronurus, Epeorus, Leucrocuta, Maccaffertium, Stenacron, and Stenonema). Species of Rhithrogeninae and Ecdyonurinae had the same gene rearrangement of CR-I-M-Q-M-ND2, whereas a novel gene rearrangement of CR-I-M-Q-NCR-ND2 was found in Heptageniinae. Non-coding regions (NCRs) of 25-47 bp located between trnA and trnR were observed in all mayflies of Heptageniidae, which may be a synapomorphy for Heptageniidae. Both the BI and ML phylogenetic analyses supported the monophyly of Heptageniidae and its subfamilies (Heptageniinae, Rhithrogeninae, and Ecdyonurinae). The phylogenetic results combined with gene rearrangements and NCR locations confirmed the relationship of the subfamilies as (Heptageniinae + (Rhithrogeninae + Ecdyonurinae)). To assess the effects of low-temperature stress on Heptageniidae species from Ottawa, Canada, we found 27 positive selection sites in eight protein-coding genes (PCGs) using the branch-site model. The selection pressure analyses suggested that mitochondrial PCGs underwent positive selection to meet the energy requirements under low-temperature stress.

19.
BMC Plant Biol ; 21(1): 305, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193036

RESUMEN

BACKGROUND: Natural variations derived from both evolutionary selection and genetic recombination, presume to have important functions to respond to various abiotic stresses, which could be used to improve drought tolerance via genomic selection. RESULTS: In the present study, the NAC-encoding gene of ZmNAC080308 was cloned and sequenced in 199 inbred lines in maize. Phylogenetic analysis showed that ZmNAC080308 is closely clusteredinto the same group with other well-known NAC genes responding to improve drought tolerance. In total, 86 SNPs and 47 InDels were identified in the generic region of ZmNAC080308, 19 of these variations were associated with GY (grain yield) in different environments. Nine variations in the 5'-UTR region of ZmNAC080308 are closely linked, they might regulate the gene expression and respond to improve GY under drought condition via Sp1-mediated transactivation. Two haplotypes (Hap1 and Hap2) identified in the, 5'-UTR region using the nine variations, and Hap2 containing insertion variants, exhibited 15.47 % higher GY under drought stress condition. Further, a functional marker was developed to predict the drought stress tolerance in a US maize inbred line panel. Lines carrying Hap2 exhibited > 10 % higher GY than those carrying Hap1 under drought stress condition. In Arabidopsis, overexpression ZmNAC080308 enhanced drought tolerance. CONCLUSIONS: ZmNAC080308 is an important gene responding to drought tolerance, a functional marker is developed for improving maize drought tolerance by selecting this gene.


Asunto(s)
Sequías , Variación Genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Estrés Fisiológico/genética , Zea mays/genética , Zea mays/fisiología , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Genotipo , Desequilibrio de Ligamiento/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple/genética , Plantones/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072601

RESUMEN

The high mortality rate in septic shock patients is likely due to environmental and genetic factors, which influence the host response to infection. Two genome-wide association studies (GWAS) on 832 septic shock patients were performed. We used integrative bioinformatic approaches to annotate and prioritize the sepsis-associated single nucleotide polymorphisms (SNPs). An association of 139 SNPs with death based on a false discovery rate of 5% was detected. The most significant SNPs were within the CISH gene involved in cytokine regulation. Among the 139 SNPs associated with death and the 1311 SNPs in strong linkage disequilibrium with them, we investigated 1439 SNPs within non-coding regions to identify regulatory variants. The highest integrative weighted score (IW-score) was obtained for rs143356980, indicating that this SNP is a robust regulatory candidate. The rs143356980 region is located in a non-coding region close to the CISH gene. A CRISPR-Cas9-mediated deletion of this region and specific luciferase assays in K562 cells showed that rs143356980 modulates the enhancer activity in K562 cells. These analyses allowed us to identify several genes associated with death in patients with septic shock. They suggest that genetic variations in key genes, such as CISH, perturb relevant pathways, increasing the risk of death in sepsis patients.


Asunto(s)
Elementos de Facilitación Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Choque Séptico/etiología , Choque Séptico/mortalidad , Proteínas Supresoras de la Señalización de Citocinas/genética , Alelos , Biomarcadores , Biología Computacional/métodos , Humanos , Interleucina-6/sangre , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Pronóstico , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Curva ROC , Secuencias Reguladoras de Ácidos Nucleicos , Reproducibilidad de los Resultados , Choque Séptico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA