Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39142943

RESUMEN

The non-Hermitian skin effect is an iconic phenomenon characterized by the aggregation of eigenstates near the system boundaries in non-Hermitian systems. While extensively studied in one dimension, understanding the skin effect and extending the non-Bloch band theory to higher dimensions encounter a formidable challenge, primarily due to infinite lattice geometries or open boundary conditions. This work adopts a point-gap perspective and unveils that non-Hermitian skin effect in all spatial dimensions originates from point gaps. We introduce the concept of uniform spectra and reveal that regardless of lattice geometry, their energy spectra are universally given by the uniform spectra, even though their manifestations of skin modes may differ. Building on the uniform spectra, we demonstrate how to account for the skin effect with generic lattice cuts and establish the connections of skin modes across different geometric shapes via momentum-basis transformations. Our findings highlight the pivotal roles point gaps play, offering a unified understanding of the topological origin of non-Hermitian skin effect in all dimensions.

2.
Sci Bull (Beijing) ; 69(11): 1667-1673, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38702278

RESUMEN

It has recently been shown that the non-Hermitian skin effect can be suppressed by magnetic fields. In this work, using a two-dimensional tight-binding lattice, we demonstrate that a pseudomagnetic field can also lead to the suppression of the non-Hermitian skin effect. With an increasing pseudomagnetic field, the skin modes are found to be pushed into the bulk, accompanied by the reduction of skin topological area and the restoration of Landau level energies. Our results provide a time-reversal invariant route to localization control and could be useful in various classical wave devices that are able to host the non-Hermitian skin effect but inert to magnetic fields.

3.
J Phys Condens Matter ; 36(33)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722360

RESUMEN

This work comprehensively investigates the non-Hermitian skin effect (NHSE) in a spinless Bernevig-Hughes-Zhang -like model in one dimension. It is generally believed that a system with non-reciprocal hopping amplitudes demonstrates NHSE. However, we show that there are exceptions, and more in-depth analyses are required to decode the presence of NHSE or its variants in a system. The fascinating aspects of our findings, depending on the inclusion of non-reciprocity in the inter-orbital hopping terms, concede the existence of conventional NHSE or NHSE at both edges and even a surprising absence of NHSE. The topological properties and the (bi-orthogonal) bulk-boundary correspondence, enumerated via computation of the (complex) Berry phase and spatial localization of the edge modes, highlight the topological phase transitions occurring therein. Further, to facilitate a structured discussion of the non-Hermitian model, we split the results intoPTsymmetric and non-PTsymmetric cases with a view to comparing the two.

4.
J Phys Condens Matter ; 36(25)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502959

RESUMEN

The finding of non-Hermitian skin effect (NHSE) has revolutionized our understanding of non-Hermitian topological phases, where the usual bulk-boundary correspondence is broken and new topological phases specific to non-Hermitian system are uncovered. Hybrid skin-topological effect (HSTE) is a class of newly discovered non-Hermitian topological states that simultaneously supports skin-localized topological edge states and extended bulk states. Here we provide a brief review of HSTE, starting from different mechanisms that have been used to realize HSTE, including non-reciprocal couplings, onsite gain/loss, and non-Euclidean lattice geometries. We also review some theoretical developments closely related to the HSTE, including the concept of higher-order NHSE, parity-time symmetry engineering, and non-Hermitian chiral skin effect. Finally, we summarize recent experimental exploration of HSTE, including its realization in electric circuits systems, non-Hermitian photonic crystals, and active matter systems. We hope this review can make the concept of hybrid-skin effect clearer and inspire new finding of non-Hermitian topological states in higher dimensional systems.

5.
Sci Bull (Beijing) ; 69(9): 1228-1236, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38503653

RESUMEN

The paradigm shift of Hermitian systems into the non-Hermitian regime profoundly modifies inherent property of the topological systems, leading to various unprecedented effects such as the non-Hermitian skin effect (NHSE). In the past decade, the NHSE has been demonstrated in quantum, optical and acoustic systems. Beside those wave systems, the NHSE in diffusive systems has not yet been observed, despite recent abundant advances in the study of topological thermal diffusion. In this work, we design a thermal diffusion lattice based on a modified Su-Schrieffer-Heeger model and demonstrate the diffusive NHSE. In the proposed model, the asymmetric temperature field coupling inside each unit cell can be judiciously realized by appropriate configurations of structural parameters. We find that the temperature fields trend to concentrate toward the target boundary which is robust against initial excitation conditions. We thus experimentally demonstrated the NHSE in thermal diffusion and verified its robustness against various defects. Our work provides a platform for exploration of non-Hermitian physics in the diffusive systems, which has important applications in efficient heat collection, highly sensitive thermal sensing and others.

6.
J Phys Condens Matter ; 36(24)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38387101

RESUMEN

We present a pedagogical review of the periodically driven non-Hermitian systems, particularly on the rich interplay between the non-Hermitian skin effect and the topology. We start by reviewing the non-Bloch band theory of the static non-Hermitian systems and discuss the establishment of its generalized bulk-boundary correspondence (BBC). Ultimately, we focus on the non-Bloch band theory of two typical periodically driven non-Hermitian systems: harmonically driven non-Hermitian system and periodically quenched non-Hermitian system. The non-Bloch topological invariants were defined on the generalized Brillouin zone and the real space wave functions to characterize the Floquet non-Hermtian topological phases. Then, the generalized BBC was established for the two typical periodically driven non-Hermitian systems. Additionally, we review novel phenomena in the higher-dimensional periodically driven non-Hermitian systems, including Floquet non-Hermitian higher-order topological phases and Floquet hybrid skin-topological modes. The experimental realizations and recent advances have also been surveyed. Finally, we end with a summarization and hope this pedagogical review can motivate further research on Floquet non-Hermtian topological physics.

7.
Sci Bull (Beijing) ; 68(20): 2330-2335, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37741745

RESUMEN

The non-Hermitian skin effect is a distinctive phenomenon in non-Hermitian systems, which manifests as the anomalous localization of bulk states at the boundary. To understand the physical origin of the non-Hermitian skin effect, a bulk band characterization based on the dynamical degeneracy on an equal frequency contour is proposed, which reflects the strong anisotropy of the spectral function. In this paper, we report the experimental observation of a newly-discovered geometry-dependent non-Hermitian skin effect and dynamical degeneracy splitting in a two-dimensional acoustic crystal and reveal their remarkable correspondence by performing single-frequency excitation measurements. Our work not only provides a controllable experimental platform for studying the non-Hermitian physics, but also confirms the unique correspondence between the non-Hermitian skin effect and the dynamical degeneracy splitting, paving a new way to characterize the non-Hermitian skin effect.

8.
J Phys Condens Matter ; 35(33)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37130523

RESUMEN

The synergy between non-Hermitian concepts and topological ideas have led to very fruitful activity in the recent years. Their interplay has resulted in a wide variety of new non-Hermitian topological phenomena being discovered. In this review, we present the key principles underpinning the topological features of non-Hermitian phases. Using paradigmatic models-Hatano-Nelson, non-Hermitian Su-Schrieffer-Heeger and non-Hermitian Chern insulator-we illustrate the central features of non-Hermitian topological systems, including exceptional points, complex energy gaps and non-Hermitian symmetry classification. We discuss the non-Hermitian skin effect and the notion of the generalized Brillouin zone, which allows restoring the bulk-boundary correspondence. Using concrete examples, we examine the role of disorder, describe the Floquet engineering, present the linear response framework, and analyze the Hall transport properties of non-Hermitian topological systems. We also survey the rapidly growing experimental advances in this field. Finally, we end by highlighting possible directions which, in our view, may be promising for explorations in the near future.

9.
Proc Natl Acad Sci U S A ; 120(21): e2209829120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37200363

RESUMEN

Solids built out of active components have exhibited odd elastic stiffness tensors whose active moduli appear in the antisymmetric part and which give rise to non-Hermitian static and dynamic phenomena. Here, we present a class of active metamaterial featured with an odd mass density tensor whose asymmetric part arises from active and nonconservative forces. The odd mass density is realized using metamaterials with inner resonators connected by asymmetric and programmable feed-forward control on acceleration and active forces along the two perpendicular directions. The active forces produce unbalanced off-diagonal mass density coupling terms, leading to non-Hermiticity. The odd mass is then experimentally validated through a one-dimensional nonsymmetric wave coupling where propagating transverse waves are coupled with longitudinal ones whereas the reverse is forbidden. We reveal that the two-dimensional active metamaterials with the odd mass can perform in either energy-unbroken or energy-broken phases separated by exceptional points along principal directions of the mass density. The odd mass density contributes to the wave anisotropy in the energy-unbroken phase and directional wave energy gain in the energy-broken phase. We also numerically illustrate and experimentally demonstrate the two-dimensional wave propagation phenomena that arise from the odd mass in active solids. Finally, the existence of non-Hermitian skin effect is discussed in which boundaries host an extensive number of localized modes. It is our hope that the emergent concept of the odd mass can open up a new research platform for mechanical non-Hermitian system and pave the ways for developing next-generation wave steering devices.

10.
Sci Bull (Beijing) ; 68(2): 157-164, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36653216

RESUMEN

The bulk-boundary correspondence (BBC) refers to the consistency between eigenvalues calculated under open and periodic boundary conditions. This consistency can be destroyed in systems with non-Hermitian skin effect (NHSE). In spite of the great success of the generalized Brillouin zone (GBZ) theory in clean non-Hermitian systems, the applicability of GBZ theory is questionable when the translational symmetry is broken. Thus, it is of great value to rebuild the BBC for disordered samples, which extends the application of GBZ theory in non-Hermitian systems. Here, we propose a scheme to reconstruct BBC, which can be regarded as the solution of an optimization problem. By solving the optimization problem analytically, we reconstruct the BBC and obtain the modified GBZ theory in several prototypical disordered non-Hermitian models. The modified GBZ theory provides a precise description of the fantastic NHSE, which predicts the asynchronous-disorder-reversed NHSE's directions.

11.
Sci Bull (Beijing) ; 67(18): 1865-1873, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546300

RESUMEN

Non-hermiticity presents a vast newly opened territory that harbors new physics and applications such as lasing and sensing. However, only non-Hermitian systems with real eigenenergies are stable, and great efforts have been devoted in designing them through enforcing parity-time (PT) symmetry. In this work, we exploit a lesser-known dynamical mechanism for enforcing real-spectra, and develop a comprehensive and versatile approach for designing new classes of parent Hamiltonians with real spectra. Our design approach is based on a new electrostatics analogy for modified non-Hermitian bulk-boundary correspondence, where electrostatic charge corresponds to density of states and electric fields correspond to complex spectral flow. As such, Hamiltonians of any desired spectra and state localization profile can be reverse-engineered, particularly those without any guiding symmetry principles. By recasting the diagonalization of non-Hermitian Hamiltonians as a Poisson boundary value problem, our electrostatics analogy also transcends the gain/loss-induced compounding of floating-point errors in traditional numerical methods, thereby allowing access to far larger system sizes.

12.
J Phys Condens Matter ; 35(5)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36410037

RESUMEN

We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed based on the theory. According to the particle-hole symmetry, there exist reciprocal particle and hole loops of generalized Brillouin zone. The critical point of quantum phase transition, where the energy gap closes, appears when the particle and hole loops intersect at Bloch points. If the non-Hermitian system has non-Hermitian skin effects, the non-Hermitian skin effect should be theZ2skin effect: the corresponding eigenstates of particle and hole localize at opposite ends of an open chain, respectively. The non-Bloch band theory is applied to two examples, non-Hermitianp- ands-wave topological superconductors. In terms of Majorana Pfaffian, aZ2non-Bloch topological invariant is defined to establish the non-Hermitian bulk-boundary correspondence for the non-Hermitian topological superconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA