Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 111(3): e16304, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517213

RESUMEN

PREMISE: The soil microbiome plays a role in plant trait expression and fitness, and plants may be locally adapted or maladapted to their soil microbiota. However, few studies of local adaptation in plants have incorporated a microbial treatment separate from manipulations of the abiotic environment, so our understanding of microbes in plant adaptation is limited. METHODS: Here we tested microbial effects on local adaptation in four paired populations of an abundant alpine plant from two community types, dry and moist meadow. In a 5-month greenhouse experiment, we manipulated source population, soil moisture, and soil microbiome and measured plant survival and biomass to assess treatment effects. RESULTS: Dry meadow populations had higher biomass than moist meadow populations at low moisture, demonstrating evidence of local adaptation to soil moisture in the absence of microbes. In the presence of microbes, dry meadow populations had greater survival than moist meadow populations when grown with dry meadow microbes regardless of moisture. Moist meadow populations showed no signs of adaptation or maladaptation. CONCLUSIONS: Our research highlights the importance of microbial mutualists in local adaptation, particularly in dry environments with higher abiotic stress. Plant populations from environments with greater abiotic stress exhibit different patterns of adaptation when grown with soil microbes versus without, while plant populations from less abiotically stressful environments do not. Improving our understanding of the role microbes play in plant adaptation will require further studies incorporating microbial manipulations.


Asunto(s)
Microbiota , Suelo , Plantas , Biomasa , Microbiología del Suelo , Pradera
2.
Sci Total Environ ; 880: 163260, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028665

RESUMEN

Insect outbreaks affect forest structure and function and represent a major category of forest disturbance globally. However, the resulting impacts on evapotranspiration (ET), and especially hydrological partitioning between the abiotic (evaporation) and biotic (transpiration) components of total ET, are not well constrained. As a result, we combined remote sensing, eddy covariance, and hydrological modeling approaches to determine the effects of bark beetle outbreak on ET and its partitioning at multiple scales throughout the Southern Rocky Mountain Ecoregion (SRME), USA. At the eddy covariance measurement scale, 85 % of the forest was affected by beetles, and water year ET as a fraction of precipitation (P) decreased by 30 % relative to a control site, with 31 % greater reductions in growing season transpiration relative to total ET. At the ecoregion scale, satellite remote sensing masked to areas of >80 % tree mortality showed corresponding ET/P reductions of 9-15 % that occurred 6-8 years post-disturbance, and indicated that the majority of the total reduction occurred during the growing season; the Variable Infiltration Capacity hydrological model showed an associated 9-18 % increase in the ecoregion runoff ratio. Long-term (16-18 year) ET and vegetation mortality datasets extend the length of previously published analyses and allowed for clear characterization of the forest recovery period. During that time, transpiration recovery outpaced total ET recovery, which was lagged in part due to persistently reduced winter sublimation, and there was associated evidence of increasing late summer vegetation moisture stress. Overall, comparison of three independent methods and two partitioning approaches demonstrated a net negative impact of bark beetles on ET, and a relatively greater negative impact on transpiration, following bark beetle outbreak in the SRME.


Asunto(s)
Escarabajos , Gorgojos , Animales , Corteza de la Planta , Bosques , Árboles
3.
Front Plant Sci ; 9: 1140, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108605

RESUMEN

The spatial patterning of alpine plant communities is strongly influenced by the variation in physical factors such as temperature and moisture, which are strongly affected by snow depth and snowmelt patterns. Earlier snowmelt timing and greater soil-moisture limitations may favor wide-ranging species adapted to a broader set of ecohydrological conditions than alpine-restricted species. We asked how plant community composition, phenology, plant water relations, and photosynthetic gas exchange of alpine-restricted and wide-ranging species differ in their responses to a ca. 40-day snowmelt gradient in the Colorado Rocky Mountains (Lewisia pygmaea, Sibbaldia procumbens, and Hymenoxys grandiflora were alpine-restricted and Artemisia scopulorum, Carex rupestris, and Geum rossii were wide-ranging species). As hypothesized, species richness and foliar cover increased with earlier snowmelt, due to a greater abundance of wide-ranging species present in earlier melting plots. Flowering initiation occurred earlier with earlier snowmelt for 12 out of 19 species analyzed, while flowering duration was shortened with later snowmelt for six species (all but one were wide-ranging species). We observed >50% declines in net photosynthesis from July to September as soil moisture and plant water potentials declined. Early-season stomatal conductance was higher in wide-ranging species, indicating a more competitive strategy for water acquisition when soil moisture is high. Even so, there were no associated differences in photosynthesis or transpiration, suggesting no strong differences between these groups in physiology. Our findings reveal that plant species with different ranges (alpine-restricted vs. wide-ranging) could have differential phenological and physiological responses to snowmelt timing and associated soil moisture dry-down, and that alpine-restricted species' performance is more sensitive to snowmelt. As a result, alpine-restricted species may serve as better indicator species than their wide-ranging heterospecifics. Overall, alpine community composition and peak % cover are strongly structured by spatio-temporal patterns in snowmelt timing. Thus, near-term, community-wide changes (or variation) in phenology and physiology in response to shifts in snowmelt timing or rates of soil dry down are likely to be contingent on the legacy of past climate on community structure.

4.
Front Microbiol ; 4: 239, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23970882

RESUMEN

[This corrects the article on p. 347 in vol. 3, PMID: 23087675.].

5.
Am J Bot ; 100(7): 1458-70, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23804552

RESUMEN

PREMISE OF THE STUDY: Nitrogen (N) inputs to the terrestrial environment have doubled worldwide during the past century. N negatively impacts plant diversity, but it is unknown why some species are more susceptible than others. While it is often assumed that competition drives species decline, N enrichment also strongly affects soil microbial communities. Can these changes affect plant-microbe interactions in ways that differentially influence success of plant species? Furthermore, can altered plant-microbe interactions lead to carbon (C) limitation in plants? METHODS: We focused on a species that increases (Deschampsia cespitosa) and one that decreases (Geum rossii) in abundance in N-fertilized plots in alpine tundra. We measured soil microbes using phospholipid fatty acids, and C limitation and transfer using a (13)C tracer experiment, C:N ratios, nonstructural carbohydrates, and leaf preformation. KEY RESULTS: While N profoundly influenced microbial communities, this change occurred similarly in association with both plant species. N addition did not alter total C allocation to microbes in either species, but it changed patterns of microbial C acquisition more in Geum, specifically in gram-negative bacteria. Geum showed evidence of C limitation: it allocated less C to storage organs, had lower C:N and carbohydrate stores, and fewer preformed leaves in N plots. CONCLUSIONS: Carbon limitation may explain why some species decline with N enrichment, and the decline may be due to physiological responses of plants to N rather than to altered plant-microbe interactions. Global change will alter many processes important in structuring plant communities; noncompetitive mechanisms of species decline may be more widespread than previously thought.


Asunto(s)
Carbono/metabolismo , Geum/metabolismo , Nitrógeno/metabolismo , Poaceae/metabolismo , Microbiología del Suelo , Fertilizantes , Geum/efectos de los fármacos , Ciclo del Nitrógeno , Poaceae/efectos de los fármacos , Suelo , Especificidad de la Especie
6.
Front Microbiol ; 3: 347, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23087675

RESUMEN

Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine co-occurrence patterns between plant species and bulk soil bacteria abundances. In this context, a co-occurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in co-occurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA