Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 752: 141885, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32890835

RESUMEN

In agriculture, the applied nitrogen (N) can be lost in the environment in different forms because of microbial transformations. It is of special concern the nitrate (NO3-) leaching and the nitrous oxide (N2O) emissions, due to their negative environmental impacts. Nitrification inhibitors (NIs) based on dimethylpyrazole (DMP) are applied worldwide in order to reduce N losses. These compounds delay ammonium (NH4+) oxidation by inhibiting ammonia-oxidizing bacteria (AOB) growth. However, their mechanism of action has not been demonstrated, which represent an important lack of knowledge to use them correctly. In this work, through chemical and biological analysis, we unveil the mechanism of action of the commonly applied 3,4-dimethyl-1H-pyrazole dihydrogen phosphate (DMPP) and the new DMP-based NI, 2-(3,4-dimethyl-1H-pyrazol-1-yl)-succinic acid (DMPSA). Our results show that DMP and DMPSA form complexes with copper (Cu2+) cations, an indispensable cofactor in the nitrification pathway. Three coordination compounds namely [Cu(DMP)4Cl2] (CuDMP1), [Cu(DMP)4SO4]n (CuDMP2) and [Cu(DMPSA)2]·H2O (CuDMPSA) have been synthesized and chemical and structurally characterized. The CuDMPSA complex is more stable than those containing DMP ligands; however, both NIs show the same nitrification inhibition efficiency in soils with different Cu contents, suggesting that the active specie in both cases is DMP. Our soil experiment reveals that the usual application dose is enough to inhibit nitrification within the range of Cu and Zn contents present in agricultural soils, although their effects vary depending on the content of these elements. As a result of AOB inhibition by these NIs, N2O-reducing bacteria seem to be beneficed in Cu-limited soils due to a reduction in the competence. This opens up the possibility to induce N2O reduction to N2 through Cu fertilization. On the other hand, when fertilizing with micronutrients such as Cu and Zn, the use of NIs could be beneficial to counteract the increase of nitrification derived from their application.


Asunto(s)
Nitrificación , Óxido Nitroso , Agricultura , Fertilizantes/análisis , Óxido Nitroso/análisis , Suelo , Microbiología del Suelo
2.
Environ Sci Pollut Res Int ; 25(9): 9155-9164, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29340863

RESUMEN

Urease inhibitors and nitrification inhibitors can reduce nitrogen (N) loss in agriculture soil. However, the effect of inhibitors on soil N2O emissions under the drip irrigation system remains unclear. A pot and a field experiment with two inhibitors were conducted to explore how inhibitors regulate soil nitrogen transformation and N2O emissions. In the pot experiment, three treatments included control, urea, and urea + N-(n-butyl)thiophosphoric triamide (NBPT, urease inhibitor). In the field experiment, three treatments included control, urea, and urea + NBPT + 2-chloro-6-(trichloromethyl)pyridine (nitrapyrin, nitrification inhibitor). The urease inhibition rate in the treatment of urea + NBPT was 27.5% at the 14th day of incubation (pot experiment), and NH4+-N was significantly decreased by 37-64% compared with urea alone treatment. In the field experiment, the nitrification inhibition rate in the treatment of urea + NBPT + nitrapyrin was 47.7 and 63.9% on the 3rd day after fertilization at the wheat heading and filling stages, respectively. Compared to urea treatment, NO3--N concentration in the double-inhibitor-added treatment was significantly decreased by 32 and 20% on the 5th day after fertilization at the heading and filling stages, respectively; N2O fluxes were also decreased by 30.9 and 33.3% at the two stages of wheat, respectively. In total, adding an inhibitor reduced N loss by 7.39 and 7.44% at the 14th and 35th day in the pot experiment and by 10.53 and 6.65% at the two growing stages of wheat in the field experiment, respectively. Path and correlation analysis showed that N2O emissions were significantly correlated with soil NO3- in both pot and field experiments.


Asunto(s)
Minerales/química , Nitrógeno/análisis , Óxido Nitroso/análisis , Urea/química , Ureasa/química , Agricultura , Fertilizantes/análisis , Nitrificación , Nitrógeno/química , Óxido Nitroso/química , Poaceae , Suelo , Triticum
3.
Waste Manag ; 69: 242-249, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28811146

RESUMEN

The carbon-nitrogen ratio (COD/NH4+-N) is an important factor affecting nitrification and denitrification in wastewater treatment; this factor also influences nitrous oxide (N2O) emissions. This study investigated two simulated intermittently aerated semi-aerobic aged refuse bioreactors (SAARB) filled with 8-year old aged refuse (AR). The research analyzed how differences in and the combination of influent COD and NH4+-N impact N2O emissions in leachate treatment. Experimental results showed that N2O emissions increased as the influent COD/NH4+-N decreased. The influent COD had a greater effect on N2O emissions than NH4+-N at the same influent ratios of COD/NH4+-N (2.7 and 8.0, respectively). The maximum N2O emission accounted for 8.82±2.65% of the total nitrogen removed from the influent leachate; the maximum level occurred when the COD was 2000mg/L. An analysis of differences in influent carbon sources at the same COD/NH4+-N ratios concluded that the availability of biodegradable carbon substrates (i.e. glucose) is an important factor affecting N2O emissions. At a low influent COD/NH4+-N ratio (2.7), the N2O conversion rate was greater when there were more biodegradable carbon substrates. Although the SAARB included the N2O generation and reduction processes, N2O reduction mainly occurred later in the process, after leachate recirculation. The maximum N2O emission rate occurred in the first hour of single-period (24h) experiments, as leachate contacted the surface AR. In practical SAARB applications, N2O emissions may be reduced by measures such as reducing the initial recirculation loading of NH4+-N substrates, adding a later supplement of biodegradable carbon substrates, and/or prolonging hydraulic retention time (HRT) of influent leachate.


Asunto(s)
Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Dióxido de Nitrógeno/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Aerobiosis , Amoníaco , Desnitrificación , Aguas Residuales
4.
Bioresour Technol ; 236: 174-185, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28402907

RESUMEN

Deammonification's performance and associated nitrous oxide emissions (N2O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N2O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N2O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N2O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist.


Asunto(s)
Óxido Nitroso/química , Nitrógeno
5.
Sci Total Environ ; 505: 1191-201, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25461117

RESUMEN

This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N2O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N2O, NO3, NH3), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N2O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels.


Asunto(s)
Biocombustibles , Conservación de los Recursos Naturales/métodos , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno , Calentamiento Global , Efecto Invernadero , Modelos Teóricos , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA