Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt A): 1-10, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39079211

RESUMEN

The anchoring sites of metal single atoms are closely related to photogenerated carrier dynamics and surface reactions. Achieving smooth photogenerated charge transfer through precise design of single-atom anchoring sites is an effective strategy to enhance the activity of photocatalytic hydrogen evolution. In this study, Pt single atoms were loaded onto ultra-thin carbon nitride with two-coordination nitrogen vacancies (VN2c-UCN-Pt) and ultra-thin carbon nitride with three-coordination nitrogen vacancies (VN3c-UCN-Pt). This paper investigated the photocatalytic hydrogen evolution performance and photogenerated carrier behavior of Pt single atoms at different anchoring sites. Surface photovoltage measurements indicated that VN2c-UCN-Pt exhibits a superior carrier separation efficiency compared to VN3c-UCN-Pt. More importantly, the surface photovoltage signal under the presence of H2O molecules revealed a significant decrease. Theoretical calculations suggest that VN2c-UCN-Pt exhibits superior capabilities in adsorbing and activating H2O molecules. Consequently, the photocatalytic hydrogen evolution efficiency of VN2c-UCN-Pt reaches 1774 µmol g-1h-1, which is 1.8 times that of VN3c-UCN-Pt with the same Pt loading. This work emphasized the structure-activity relationship between single-atom anchoring sites and photocatalytic activity, providing a new perspective for designing precisely dispersed single-atom sites to achieve efficient photocatalytic hydrogen evolution.

2.
ACS Nano ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058358

RESUMEN

Photocatalytic H2O2 production has attracted much attention as an alternative way to the industrial anthraquinone oxidation process but is limited by the weak interaction between the catalysts and reactants as well as inefficient proton transfer. Herein, we report on a hydrogen-bond-broken strategy in carbon nitride for the enhancement of H2O2 photosynthesis without any sacrificial agent. The H2O2 photosynthesis is promoted by the hydrogen bond formation between the exposed N atoms on hydrogen-bond-broken carbon nitride and H2O molecules, which enhances proton-coupled electron transfer and therefore the photocatalytic activity. The exposed N atoms serve as proton buffering sites for the proton transfer from H2O molecules to carbon nitride. The H2O2 photosynthesis is also enhanced through the enhanced adsorption and reduction of O2 gas toward H2O2 on hydrogen-bond-broken carbon nitride because of the formation of nitrogen vacancies (NVs) and cyano groups after the intralayer hydrogen bond breaking on carbon nitride. A high light-to-chemical conversion efficiency (LCCE) value of 3.85% is achieved. O2 and H2O molecules are found to undergo a one-step two-electron reduction pathway by photogenerated hot electrons and a four-electron oxidation process to produce O2 gas, respectively. Density functional theory (DFT) calculations validate the O2 adsorption and reaction pathways. This study elucidates the significance of the hydrogen bond formation between the catalyst and reactants, which greatly increases the proton tunneling dynamics.

3.
Adv Sci (Weinh) ; 11(19): e2308668, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477515

RESUMEN

Vanadium nitride (VN) is a potential cathode material with high capacity and high energy density for aqueous zinc batteries (AZIBs). However, the slow kinetics resulting from the strong electrostatic interaction of the electrode materials with zinc ions is a major challenge for fast storage. Here, VN clusters with nitrogen-vacancy embedded in carbon (C) (Nv-VN/C-SS-2) are prepared for the first time to improve the slow reaction kinetics. The nitrogen vacancies can effectively accelerate the reaction kinetics, reduce the electrochemical polarization, and improve the performance. The density functional theory (DFT) calculations also prove that the rapid adsorption and desorption of zinc ions on Nv-VN/C-SS-2 can release more electrons to the delocalized electron cloud of the material, thus adding more active sites. The Nv-VN/C-SS-2 exhibits a specific capacity and outstanding cycle life. Meanwhile, the quasi-solid-state battery exhibits a high capacity of 186.5 mAh g-1, ultra-high energy density of 278.9 Wh kg-1, and a high power density of 2375.1 W kg-1 at 2.5 A g-1, showing excellent electrochemical performance. This work provides a meaningful reference value for improving the comprehensive electrochemical performance of VN through interface engineering.

4.
ChemSusChem ; 16(22): e202300945, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37703103

RESUMEN

The effect of the partial substitution of Mo with W in Co3 Mo3 N and Ni2 Mo3 N on ammonia synthesis activity and lattice nitrogen reactivity has been investigated. This is of interest as the coordination environment of lattice N is changed by this process. When tungsten was introduced into the metal nitrides by substitution of Mo atoms, the catalytic performance was observed to have decreased. As expected, Co3 Mo3 N was reduced to Co6 Mo6 N under a 3 : 1 ratio of H2 /Ar. Co3 Mo2.6 W0.4 N was also shown to lose a large percentage of lattice nitrogen under these conditions. The bulk lattice nitrogen in Ni2 Mo3 N and Ni2 Mo2.8 W0.2 N was unreactive, demonstrating that substitution with tungsten does not have a significant effect on lattice N reactivity. Computational calculations reveal that the vacancy formation energy for Ni2 Mo3 N is more endothermic than Co3 Mo3 N. Furthermore, calculations suggest that the inclusion of W does not have a substantial impact on the surface N vacancy formation energy or the N2 adsorption and activation at the vacancy site.

5.
J Colloid Interface Sci ; 651: 726-733, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37567116

RESUMEN

Carbon nitride is an attractive non-metallic photocatalyst due to its small surface area, rapid electron-hole recombination, and low absorption of visible light. In this study, one-dimensional carbon nitride nanotubes were successfully synthesized by supramolecular self-assembly method for photocatalytic reduction of CO2 under mild conditions. The material demonstrates significantly improved CO2-to-CO activity compared to bulk carbon nitride under visible light irradiation, with a rate of 12.58 µmol g-1h-1, which is 3.37 times higher than that of pristine carbon nitride. This enhanced activity can be attributed to the abundant oxygen defects and nitrogen vacancies in the unique tubular carbon nitride structure, which results in the generation of more active sites and the efficient acceleration of the migration of photogenerated electron-hole pairs. Various characterizations collectively support the presence of these defects and vacancies. Moreover, in situ DRIFTS spectroscopy supported the proposed reaction mechanism for the photoreduction of CO2. This eco-friendly design approach provides novel insights into utilizing solar energy for the production of value-added products.

6.
J Colloid Interface Sci ; 651: 645-658, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562306

RESUMEN

The introduction of nitrogen vacancies into polymeric carbon nitride (PCN) has been attested to be a reliable strategy to enhance photocatalytic performance. Nitrogen vacancies were considered as active sites to promote the adsorption of target molecules and capture photoexcited electrons to inhibit the recombination of charge pairs, accelerate photoinduced electrons to participate in photocatalytic reaction. In this paper, a series of PCN with rich nitrogen vacancies were prepared by etching of chromic acid solution. Sample 20KCSCN had the highest photocatalytic performance whose evolution efficiency of CO2 to CO and CH4 can reach 3.9 and 0.5 µmol·g-1·h-1, respectively. These evolution efficiencies are 2.9 and 4 times higher than that of the PCN. Meanwhile, 20KCSCN demonstrates high CO conversion selectivity and stability. The successful introduction of nitrogen vacancies not only increases the active sites of PCN surface, but also optimizes the optical structure, which dramatically boosts the separation of photoexcited charge pairs and the reduction capacity of photogenerated electrons. The enhancement mechanism for photocatalytic CO2 reduction performance of PCN was proposed. Besides, photocatalytic H2 evolution experiments were performed on all samples to confirm the universality of PCN photocatalytic activity enhancement etched by chromic acid solution. H2 evolution rate on 20KCSCN can reach 652 µmol·g-1·h-1, which is 1.6-fold higher than that on PCN (254 µmol·g-1·h-1) after 4 h irradiation under a 300 W Xe lamp. This work offers new venue for introducing nitrogen vacancies in PCN to regulate photoexcited charge pairs transfer. The photocatalytic enhancement of CO2 reduction could be used to alleviate the serious issue of excessive CO2 emission and energy crisis.

7.
J Colloid Interface Sci ; 652(Pt A): 122-131, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591074

RESUMEN

Metalloporphyrin compounds have excellent electron transfer and visible light absorption ability, demonstrating broad application prospects in the field of photocatalysis. In this work, the nitrogen vacancies (NVs) were successfully introduced into zinc porphyrin (ZnTCPP) ultrathin nanosheets through surface N2 plasma treatment, which is environmentally friendly and can react in low temperatures. Furthermore, the prepared nitrogen vacancies-zinc porphyrin (NVs-ZnTCPP) materials exhibited excellent photocatalytic CO2 reduction activity and selectivity, specifically, the CO production rate of ZnTCPP-1 (N2 plasma treatment, 1 min) achieved as high as 12.5 µmol g-1h-1, which is about 2.7 times greater than that of untreated ZnTCPP. Based on the experimental and density functional theory calculation (DFT) results, it is found that the promoted photocatalytic performance of NVs-ZnTCPP could be mainly attributed to nitrogen vacancy-induced spin polarization by reducing the reaction barriers and inhibiting the recombination of photoexcited carriers. This work provides a new perspective for the construction of vacancy-based metalloporphyrin, and further explores the intrinsic mechanism between the electron spin property and the performance of the photocatalyst.

8.
J Colloid Interface Sci ; 645: 251-265, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37149999

RESUMEN

The Z-scheme heterojunction has demonstrated significant potential for promoting photogenerated carrier separation. However, the rational design of all-solid Z-scheme heterojunctions catalysts and the controversies about carrier transfer path of direct Z-scheme heterojunctions catalysts face various challenges. Herein, a novel heterojunction, Cu2O@V-CN (octa), was fabricated using V-CN (carbon nitride with nitrogen-rich vacancies) in-situ electrostatic self-wrapping Cu2O octahedra. Density functional theory (DFT) calculations revealed that the separation of carriers across the Cu2O@V-CN (octa) heterointerface was directly mapped to the Z-scheme mechanism compared to Cu2O/V-CN (sphere). This is because the Cu2O octahedra expose more highly active (111) lattice planes with more terminal Cu atoms and V-CN with abundant nitrogen vacancies to form delocalized electronic structures like electronic reservoirs. This facilitates the wrapping of Cu2O octahedra by V-CN and protects their stability via tighter interfacial contact, thus enhancing the tunneling of carriers for rapid photocatalytic sterilization. These findings provide novel approaches for designing high-efficiency Cu2O-based photocatalytic antifoulants for practical applications.

9.
Chemosphere ; 332: 138788, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37119923

RESUMEN

Metal-nitrogen-site catalysts are widely recognized as effective heterogeneous catalysts in peroxymonosulfate (PMS)-based advanced oxidation processes. However, the selective oxidation mechanism for organic pollutants is still contradictory. In this work, manganese-nitrogen active centers and tunable nitrogen vacancies were synchronously constructed on graphitic carbon nitride (LMCN) through l-cysteine-assisted thermal polymerization to reveal different antibiotic degradation mechanisms. Benefiting from the synergism of manganese-nitrogen bond and nitrogen vacancies, the LMCN catalyst exhibited excellent catalytic activity for the degradation of tetracycline (TC) and sulfamethoxazole (SMX) antibiotics with first-order kinetic rate constants of 0.136 min-1 and 0.047 min-1, which were higher than those of other catalysts. Electron transfer dominated TC degradation at low redox potentials, while electron transfer and high-valent manganese (Mn (V)) were responsible for SMX degradation at high redox potentials. Further experimental studies unveiled that the pivotal role of nitrogen vacancies is to promote electron transfer pathway and Mn(V) generation, while nitrogen-coordinated manganese as the primary catalytic active site determines Mn(V) generation. In addition, the antibiotic degradation pathways were proposed and the toxicity of byproducts was analyzed. This work provides an inspiring idea for the controlled generation of reactive oxygen species by targeted activation of PMS.


Asunto(s)
Manganeso , Nitrógeno , Nitrógeno/química , Peróxidos/química , Sulfametoxazol , Antibacterianos
10.
Small ; 19(23): e2208254, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36890786

RESUMEN

This work reports a new form of tubular g-C3 N4 that is featured with a hierarchical core-shell structure introduced with phosphorous elements and nitrogen vacancies. The core is self-arranged with randomly stacked g-C3 N4 ultra-thin nanosheets along the axial direction. This unique structure significantly benefits electron/hole separation and visible-light harvesting. A superior performance for the photodegradation of rhodamine B and tetracycline hydrochloride is demonstrated under low intensity visible light. This photocatalyst also exhibits an excellent hydrogen evolution rate (3631 µmol h-1 g-1 ) under visible light. Realizing this structure just requires the introduction of phytic acid into the solution of melamine and urea during hydrothermal treatment. In this complex system, phytic acid plays as the electron donor to stabilize melamine/cyanuric acid precursor via coordination interaction. Calcination at 550 °C directly renders the transformation of precursor into such hierarchical structure. This process is facile and shows the strong potential toward mass production for real applications.

11.
Small ; 19(21): e2208117, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840675

RESUMEN

Traditional defect engineering and doping strategies are considered effective means for improving H2 evolution, but the uncontrollability of the modification process does not always lead to efficient activity. A defect-induced heteroatom refilling strategy is used here to synthesize heteroatoms introduced carbon nitride by precisely controlling the "introduction" sites on efficient N1 sites. Density functional theory calculations show that the refilling of B, P, and S sites have stronger H2 O adsorption and dissociation capacity than traditional doping, which makes it an optimal H2 production path. The large internal electric field strength of heteroatom-refilled catalysts leads to fast electron transfer and the hydrogen production of the best sample is up to 20.9 mmol g-1  h-1 . This work provides a reliable and clear insight into controlled defect engineering of photocatalysts and a universal modification strategy for typical heteroatom and co-catalyst systems for H2 production.

12.
J Colloid Interface Sci ; 636: 223-229, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634392

RESUMEN

Polymeric carbon nitride (PCN) with vacancies usually exhibits distinguished mass transfer efficiency, outstanding carrier kinetics and excellent photoactivity. Previous studies have revealed the effect of edge vacancies in heptazine units of PCN; however, the roles of central nitrogen vacancies are scarcely investigated. Herein, central nitrogen vacancies polymeric carbon nitride (PCN-NVC) is rationally prepared for photocatalytic H2O2 production with a rate of 25.1 umol/h (λ > 420 nm), which is 3.5 times than that of pristine PCN. Photoelectronic measurements reveal that the central nitrogen vacancies optimize the kinetic process of electron-hole pairs. Density functional theory (DFT) calculations disclose that PCN-NVC displays lower O2 adsorption energy, thereby accelerating the OOH* formation and decreasing the H2O2 generation energy barrier. This work not only provides a strategy for constructing central nitrogen vacancies polymeric carbon nitrogen, but also affords a deep understanding of its roles in photocatalytic H2O2 production.

13.
J Colloid Interface Sci ; 630(Pt A): 556-572, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36270176

RESUMEN

Heterogeneous catalysis composed of plasmonic metal and semiconductor has been utilized to tune local surface electron density in MOA (Molecular oxygen activation). However, there is a severe antagonistic effect between Schottky junction carriers and SPR (Surface Plasmon Resonance) induced hot carriers transfer routers when metal and semiconductor are both excited to dramatically reduce carriers separation efficiency. Hence, a highly effective photocatalytic antifoulant obtained by V-CN (carbon nitride with nitrogen vacancies) in-situ loading Cu2O and Ag nanoparticles (Cu2O/Ag/V-CN) was introduced to promote MOA to assist the metal ions sterilization. The DFT calculations (Density Functional Theory) and FEM calculations (Finite Element Method) intuitively proved the photocatalytic antifoulant belonged to a ternary Z-scheme heterojunction and could visibly weaken the antagonistic effect of hot carriers and Schottky carriers transport routes. The delocalized electron structure caused by V-CN and the effective electron mediator of Ag were the key to the formation of Z-scheme interfacial heterojunctions. These conclusions were also supported by experimental data, like more ∙O2- production capacity, efficient carriers separation, and higher carriers lifetime (27% higher than Cu2O and Cu2O/V-CN) as well as the weakened Cu2O photocorrosion tendency (Cu2O turning into CuO). Additionally, except for increasing nearly-three times adsorption energy of O2 for rapid activation, Cu2O/Ag/V-CN with abundant nitrogen vacancies can more significantly slow metal ions release (less about 97% to pure Cu2O and at least 22% higher than reported systems), which can observably save the amount of catalyst and heavy metals content. Therefore, Cu2O/Ag/V-CN has great potential for practical antifouling applications.


Asunto(s)
Nanopartículas del Metal , Plata , Plata/farmacología , Plata/química , Cobre/farmacología , Cobre/química , Catálisis , Nitrógeno
14.
Molecules ; 27(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36364445

RESUMEN

Nonmetallic co-doping and surface hole construction are simple and efficient strategies for improving the photocatalytic activity and regulating the electronic structure of g-C3N4. Here, the g-C3N4 catalysts with B-F or B-S co-doping combined with nitrogen vacancies (Nv) are designed. Compared to the pristine g-C3N4, the direction of the excited electron orbit for the B-F-co-doped system is more matching (N2pz→C2pz), facilitating the separation of electrons and holes. Simultaneously, the introduced nitrogen vacancy can further reduce the bandgap by generating impurity states, thus improving the utilization rate of visible light. The doped S atoms can also narrow the bandgap of the B-S-Nv-co-doped g-C3N4, which originates from the p-orbital hybridization between C, N, and S atoms, and the impurity states are generated by the introduction of N vacancies. The doping of B-F-Nv and B-S-Nv exhibits a better CO2 reduction activity with a reduced barrier for the rate-determining step of around 0.2 eV compared to g-C3N4. By changing F to S, the origin of the rate-determining step varies from *CO2→*COOH to *HCHO→*OCH3, which eventually leads to different products of CH3OH and CH4, respectively.

15.
Environ Res ; 203: 111844, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34364861

RESUMEN

This work for the first time reports bimetallic Ni-Co and monometallic (Ni and Co) nanoparticles (NPs)-engineered carbon nitride nanotubes with nitrogen vacancies (V-CNNTs) for visible-light photocatalytic H2 generation application. The bimetallic Ni-Co NPs have an average size of less than 5 nm and are homogenously dispersed along the nanochannels of V-CNNTs. The composition of the bimetallic NPs plays an essential role to maximize photocatalytic activity. With the optimal Ni/Co atom ratio of 3:1, Ni-Co/V-CNNTs nanohybrids yielded a H2 production rate of 4.19 µmol/h, which is higher than those of monometallic counterparts and V-CNNTs. The intimately loaded Ni-Co NPs and incorporated nitrogen vacancies enhance the photocatalytic performance through extended light absorption, abundant active sites, strong metal-support interaction, and efficient charge carrier transfer along the axial direction. This study presents a stable and highly efficient hybrid as a promising photocatalyst for visible light photocatalytic H2 production through water splitting.


Asunto(s)
Nanopartículas , Nanotubos , Catálisis , Hidrógeno , Nitrilos , Nitrógeno
16.
Adv Mater ; 33(40): e2103150, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34415633

RESUMEN

Electrochemical CO2 reduction to produce valuable C2 products is attractive but still suffers with relatively poor selectivity and stability at high current densities, mainly due to the low efficiency in the coupling of two *CO intermediates. Herein, it is demonstrated that high-density nitrogen vacancies formed on cubic copper nitrite (Cu3 Nx ) feature as efficient electrocatalytic centers for CO-CO coupling to form the key OCCO* intermediate toward C2 products. Cu3 Nx with different nitrogen densities are fabricated by an electrochemical lithium tuning strategy, and density functional theory calculations indicate that the adsorption energies of CO* and the energy barriers of forming key C2 intermediates are strongly correlated with nitrogen vacancy density. The Cu3 Nx catalyst with abundant nitrogen vacancies presents one of the highest Faradaic efficiencies toward C2 products of 81.7 ± 2.3% at -1.15 V versus reversible hydrogen electrode (without ohmic correction), corresponding to the partial current density for C2 production as -307 ± 9 mA cm-2 . An outstanding electrochemical stability is also demonstrated at high current densities, substantially exceeding CuOx catalysts with oxygen vacancies. The work suggests an attractive approach to create stable anion vacancies as catalytic centers toward multicarbon products in electrochemical CO2 reduction.

17.
J Colloid Interface Sci ; 600: 639-648, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049019

RESUMEN

B atoms and cyano groups co-doped graphite carbon nitride with nitrogen vacancies (VN-BC-CN) was explored via one-step in-situ route. A series of comprehensive experiments confirmed that B atoms and cyano groups had been doped into the framework of graphite carbon nitride, forming VN-BC-CN catalyst sample with a large number of nitrogen-vacancy defects. As electron acceptors, B and cyano groups could be used as active sites for nitrogen conversion. The defect level caused by nitrogen vacancy led to red shift of the light absorption edge, which resulted in higher separation efficiency of photo-induced carriers and faster transfer rate of photo-induced electrons for the VN-BC-CN catalyst. This VN-BC-CN catalyst had good photocatalytic nitrogen fixation performance in the ultrapure water without any hole-scavengers. The nitrogen photofixation rate of VN-BC-CN (115.53 µmol g-1 h-1) was 25.5 times that of pure carbon nitride (GCN, 4.53 µmol g-1 h-1). Moreover, NH4+ generation rate hardly decreased after 10 h reaction, and the NH4+ generation rate could reach 79.56 µmol g-1 h-1 in the fifth cycle, showing the good photocatalytic stability of the VN-BC-CN catalyst.


Asunto(s)
Fijación del Nitrógeno , Agua , Catálisis , Luz , Nitrógeno
18.
J Hazard Mater ; 414: 125528, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667803

RESUMEN

Limited peroxymonosulfate (PMS, HSO4-) activation efficiency resulted from slow metal reduction has been a challenge in visible-light (vis) assisted sulfate radical-based oxidation. Herein, a Z-scheme photocatalyst composed of nitrogen-defect-rich graphitic carbon nitride nanosheets embedded with nickel cobaltate nanoparticles (NiCo2O4/g-C3N4-Nvac) was elaborately designed to accelerate Ni(III)/Ni(II) and Co(III)/Co(II) cycles for PMS activation in PMS/vis system. The NiCo2O4/g-C3N4-Nvac exhibited remarkable enhancement with a tetracycline hydrochloride (TCH) degradation rate constant (0.1168 min-1), higher than those of NiCo2O4/g-C3N4 (0.0724 min-1) and g-C3N4 (0.0233 min-1), respectively. Also, the removal efficiencies of 95.5%, 94.2%, 98.0% and 91.4% for carbamazepine, 4-chlorophenol, atrazine and p-nitrophenol were achieved within 30 min, respectively. Theoretical and experimental results suggested that nitrogen (N) vacancies modulated electric structure to build Z-scheme-charge-transfer platform for rapid reduction of Ni(III) and Co(III), thereby accelerating PMS activation for remarkable removal of emerging pollutants. NiCo2O4/g-C3N4-Nvac exhibited excellent stability and corresponding electrical energy per order (EE/O) in different water matrix was evaluated. Additionally, TCH degradation behavior, pathways and toxicity of products were analyzed, respectively. This work provided an novel paradigm to design the efficient photo-activator of PMS for environmental remediation.

19.
Chemosphere ; 258: 127343, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32947672

RESUMEN

Hydroxyl radicals (OH) have robust non-selective oxidizing properties to effectively degrade organic pollutants. However, graphitic carbon nitride (g-C3N4) is restricted to directly generate OH due to its intrinsic valence band. In this study, we report a facile environmental-friendly self-modification strategy to synthesize reduced graphitic carbon nitride (RCN), with nitrogen vacancies and CN functional groups. The incorporation of CN enabled to downshift the valence band level, which endowed RCN with the capacity to directly generate OH via h+. Experimental and instrumental analyses revealed the critical roles of nitrogen vacancies and CN groups in the modification of the RCN band structure to improve its visible light absorption and oxidizing capacity. With these superior properties, the RCN was significantly enhanced for the photocatalytic degradation of DCF under visible light irradiation. The self-modification strategy articulated in this study has strong potential for the creation of customized g-C3N4 band structures with enhanced oxidation performance.


Asunto(s)
Diclofenaco/química , Grafito/química , Compuestos de Nitrógeno/química , Catálisis , Luz , Oxidación-Reducción , Procesos Fotoquímicos
20.
ACS Appl Mater Interfaces ; 12(34): 38266-38274, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32846481

RESUMEN

Due to the harsh reaction conditions, high energy consumption, and numerous carbon emissions of the traditional Haber-Bosch method, the fixation of nitrogen under environmentally friendly and milder conditions is of great importance. Recently, photoelectrochemical (PEC) strategies have attracted extensive attention, where the catalysts with the advantages of cost-effectiveness and improved efficiency are critical for the nitrogen reduction reaction (NRR). Herein, we synthesized nitrogen vacancies that contained g-C3N5 (NV-g-C3N5) and combined with BiOBr to construct the p-n heterostructure NV-g-C3N5/BiOBr, in which the double-electron transfer mechanism was constructed. In one side, the nitrogen vacancies store the electrons coming from the g-C3N5 and provide for the nitrogen activation when needed; in addition, NV-g-C3N5/BiOBr further separates photoinduced electrons and holes because of the matched "Z"-shaped energy band structure. The double-electron transfer mechanism effectively retards the recombination of charge carriers and ensures the support of high-quality electrons, which results in excellent PEC NRR performance without the addition of noble metals. Although yields and durability are insufficient, the described double-electron transfer mechanism manifests the potential of the non-noble metal material in the PEC NRR, providing a foundation for the design of a more affordable and efficient photocathode in nitrogen reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA