Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109391

RESUMEN

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Asunto(s)
Carbono , Bosques , Micorrizas , Nitrógeno , Plantones , Suelo , Micorrizas/fisiología , Plantones/microbiología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Nitrógeno/metabolismo , Suelo/química , Carbono/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Árboles/microbiología , Árboles/crecimiento & desarrollo , Microbiología del Suelo
2.
Sci Total Environ ; 948: 175008, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053526

RESUMEN

Recent evidence suggests that changes in carbon-degrading extracellular enzyme activities (C-EEAs) can help explain soil organic carbon (SOC) dynamics under nitrogen (N) addition. However, the factors controlling C-EEAs remain unclear, impeding the inclusion of microbial mechanisms in global C cycle models. Using meta-analysis, we show that the responses of C-EEAs to N addition were best explained by mycorrhizal association across a wide range of environmental and experimental factors. In ectomycorrhizal (ECM) dominated ecosystems, N addition suppressed C-EEAs targeting the decomposition of structurally complex macromolecules by 13.1 %, and increased SOC stocks by 5.2 %. In contrast, N addition did not affect C-EEAs and SOC stocks in arbuscular mycorrhizal (AM) dominated ecosystems. Our results indicate that earlier studies may have overestimated SOC changes under N addition in AM-dominated ecosystems and underestimated SOC changes in ECM-dominated ecosystems. Incorporating this mycorrhizal-dependent impact of EEAs on SOC dynamics into Earth system models could improve predictions of SOC dynamics under environmental changes.


Asunto(s)
Carbono , Micorrizas , Nitrógeno , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Nitrógeno/metabolismo , Suelo/química , Carbono/metabolismo , Ecosistema , Ciclo del Carbono
3.
Harmful Algae ; 135: 102633, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38830715

RESUMEN

Nitrogen-fixing cyanobacteria not only cause severe blooms but also play an important role in the nitrogen input processes of lakes. The production of extracellular polymeric substances (EPS) and the ability to fix nitrogen from the atmosphere provide nitrogen-fixing cyanobacteria with a competitive advantage over other organisms. Temperature and nitrogen availability are key environmental factors in regulating the growth of cyanobacteria. In this study, Dolichospermum (formerly known as Anabaena) was cultivated at three different temperatures (10 °C, 20 °C, and 30 °C) to examine the impact of temperature and nitrogen availability on nitrogen fixation capacity and the release of EPS. Initially, confocal laser scanning microscopy (CLSM) and the quantification of heterocysts at different temperatures revealed that lower temperatures (10 °C) hindered the differentiation of heterocysts under nitrogen-deprived conditions. Additionally, while heterocysts inhibited the photosynthetic activity of Dolichospermum, the secretion of EPS was notably affected by nitrogen limitation, particularly at 30 °C. Finally, real-time quantitative polymerase chain reaction (qPCR) was used to measure the expression of nitrogen-utilizing genes (ntcA and nifH) and EPS synthesis-related genes (wzb and wzc). The results indicated that under nitrogen-deprived conditions, the expression of each gene was upregulated, and there was a significant correlation between the upregulation of nitrogen-utilizing and EPS synthesis genes (P < 0.05). Our findings suggested that Dolichospermum responded to temperature variation by affecting the formation of heterocysts, impacting its potential nitrogen fixation capacity. Furthermore, the quantity of EPS released was more influenced by nitrogen availability than temperature. This research enhances our comprehension of interconnections between nitrogen deprivation and EPS production under the different temperatures.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Fijación del Nitrógeno , Nitrógeno , Temperatura , Nitrógeno/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Anabaena/metabolismo , Anabaena/fisiología , Anabaena/genética
4.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822559

RESUMEN

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Asunto(s)
Sequías , Ecosistema , Ciclo del Nitrógeno , Isótopos de Nitrógeno , Suelo , Suelo/química , Isótopos de Nitrógeno/análisis , China , Nitrógeno/análisis , Nitrógeno/metabolismo , Clima Desértico
5.
J Cell Sci ; 137(12)2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38780300

RESUMEN

Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.


Asunto(s)
Metabolismo de los Lípidos , Mitosis , Nitrógeno , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Schizosaccharomyces/genética , Nitrógeno/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Mutación/genética
6.
Mar Drugs ; 22(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38393064

RESUMEN

This study aimed to investigate the regulation of fucoxanthin (FX) biosynthesis under various nitrogen conditions to optimize FX productivity in Phaeodactylum tricornutum. Apart from light, nitrogen availability significantly affects the FX production of microalgae; however, the underlying mechanism remains unclear. In batch culture, P. tricornutum was cultivated with normal (NN, 0.882 mM sodium nitrate), limited (LN, 0.22 mM), and high (HN, 8.82 mM) initial nitrogen concentrations in f/2 medium. Microalgal growth and photosynthetic pigment production were examined, and day 5 samples were subjected to fucoxanthin-chlorophyll a/c-binding protein (FCP) proteomic and transcriptomic analyses. The result demonstrated that HN promoted FX productivity by extending the exponential growth phase for higher biomass and FX accumulation stage (P1), showing a continuous increase in FX accumulation on day 6. Augmented FX biosynthesis via the upregulation of carotenogenesis could be primarily attributed to enhanced FCP formation in the thylakoid membrane. Key proteins, such as LHC3/4, LHCF8, LHCF5, and LHCF10, and key genes, such as PtPSY, PtPDS, and PtVDE, were upregulated under nitrogen repletion. Finally, the combination of low light and HN prolonged the P1 stage to day 10, resulting in maximal FX productivity to 9.82 ± 0.56 mg/L/day, demonstrating an effective strategy for enhancing FX production in microalgae cultivation.


Asunto(s)
Diatomeas , Microalgas , Xantófilas , Clorofila A , Nitrógeno/metabolismo , Proteómica , Diatomeas/metabolismo
7.
Sci Total Environ ; 917: 170505, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301778

RESUMEN

Although soil microbial biomass responses to experimental warming have been extensively studied, the mechanisms through which elevated temperatures influence soil microbial biomass remain unclear. In this study, we performed a global meta-analysis to quantify the global pattern of soil microbial biomass in response to warming. Our findings suggest that global warming effect is not apparent when all the data are pooled together, while warming does increase microbial biomass under specific conditions (Δ°C ≥ 2 °C). This constructive influence is particularly accentuated under certain circumstances, including high precipitation levels (>800 mm), short treatment durations (<1 year), and within agricultural ecosystems. More importantly, our findings suggest that the impact of global warming on soil microbial biomass is largely mediated by changes in soil nitrogen availability. These findings underscore the pivotal role of nitrogen availability in modulating the response of soil microbial biomass to warming, while also emphasizing the intricate influence between multiple factors such as temperature, duration, and precipitation in shaping the patterns of warming effects.


Asunto(s)
Ecosistema , Suelo , Biomasa , Nitrógeno/análisis , Microbiología del Suelo , Carbono
8.
Sci Total Environ ; 917: 170497, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301775

RESUMEN

Climate change is leading to the upward migration of treelines in mountainous regions, resulting in changes to the carbon and nitrogen inputs in soils. The impact of these alterations on the microbial mineralization of the existing soil organic carbon (SOC) pool remains uncertain, making it challenging to anticipate their effects on the carbon balance. To enhance our prediction and understanding of native SOC mineralization in Himalayan regions resulting from treeline shifts, a study was conducted to quantify soil priming effects (PEs) at high elevations above the treeline ecosystem. In laboratory incubation, soils were treated with a combination of 13C-glucose and varying nitrogen rates, along with carbon-only treatments and control groups without any amendments. The addition of carbon with varying nitrogen addition rates exhibited diverse PEs on native SOC. A highly positive PE was observed under low nitrogen input due to a high carbon/nitrogen imbalance and increased L-leucine aminopeptidase (LAP) activity, coupled with low nitrogen availability and carbon use efficiency (CUE). In contrast, a positive PE declined following high nitrogen input due to a low carbon/nitrogen imbalance and LAP activity, coupled with high nitrogen availability and CUE. These findings support the concept that multiple mechanisms (i.e., microbial nitrogen mining and microbial metabolic efficiency) exist that regulate SOC mineralization under the addition of carbon with varying nitrogen rates. Thus, an increase in nitrogen availability fulfils microbial nitrogen demand, reduces the microbial carbon/nitrogen imbalance, decreases enzyme activity that requires nitrogen and enhances microbial metabolic efficiency. Consequently, this mechanism reduces the positive PE, thereby serving as a potential tool for stabilizing native SOC in above-treeline ecosystems.


Asunto(s)
Carbono , Ecosistema , Suelo , Nitrógeno/análisis , Microbiología del Suelo
9.
Plants (Basel) ; 13(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337948

RESUMEN

Innovative measures of nitrogen (N) fertilization to increase season-long N availability is essential for gaining the optimal foxtail millet (Setaria italica L. Beauv.) productivity and N use efficiency. A split plot field experiment was conducted using the foxtail millet variety Huayougu 9 in 2020 and 2021 in Northeast China to clarify the physiological mechanism of a novel polyaspartic acid-chitosan (PAC)-coated urea on N assimilation and utilization from foxtail millet. Conventional N fertilizer (CN) and the urea-coated -PAC treatments were tested under six nitrogen fertilizer application levels of 0, 75, 112.5, 150, 225, and 337.5 kg N ha-1. The results showed that compared to CN, PN increased the foxtail millet yield by 5.53-15.75% and 10.43-16.17% in 2020 and 2021, respectively. PN increased the leaf area index and dry matter accumulation by 7.81-18.15% and 12.91-41.92%, respectively. PN also enhanced the activities of nitrate reductase, glutamine synthetase, glutamic oxaloacetic transaminase, and glutamic-pyruvic transaminase, thereby increasing the soluble protein in the leaf, plant, and grain N content at harvest compared to CN. Consequently, partial factor productivity from applied N, the agronomic efficiency of applied N, recovery efficiency of applied N, and physiological efficiency of applied N of foxtail millet under PN treatments compared to CN were increased. The improvement effect of the items above was more noticeable under the low-middle N application levels (75, 112.5, and 150 kg N ha-1). In conclusion, the PAC could achieve the goal of high yield and high N use efficiency in foxtail millet under the background of a one-time basic fertilizer application.

10.
Water Res ; 252: 121213, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38306752

RESUMEN

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins. A series of field experiments were carried out during bloom seasons to evaluate the salt tolerance of natural Microcystis colonies. The salt tolerance threshold varied from 7 to 17 and showed a positive relationship with intracellular carbohydrate content and a negative relationship with nitrogen availability in water. In August when upstream nitrogen availability was lower, the Microcystis colonies could maintain their biomass even after a sudden increase in salinity from 4 to 10. Laboratory-cultivated Microcystis that accumulated higher carbohydrate content at lower nitrogen availability showed better cell survival at higher salinity. The sharp release of microcystins into the surrounding water occurred when salinity exceeded the salt tolerance threshold of the Microcystis. Thus, Microcystis with higher salt tolerance can accumulate more toxins in cells. The obtained results suggest that the cell survival and toxin concentration in brackish waters depend on the physiological properties of Microcystis formed in the upstream waters. Thus, the life history of Microcystis in upstream waters could have a significant impact on its salt tolerance in downstream brackish waters, where the ecological risk of the salt-tolerant Microcystis requires special and careful management in summer at low nitrogen availability.


Asunto(s)
Microcystis , Microcystis/fisiología , Microcistinas , Tolerancia a la Sal , Nitrógeno , Lagos/microbiología , Aguas Salinas , Agua , Carbohidratos
11.
Chemosphere ; 346: 140619, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944768

RESUMEN

Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.


Asunto(s)
Robinia , Robinia/metabolismo , Plantones/metabolismo , Fotosíntesis , Suelo/química , Nitrógeno , Antioxidantes/metabolismo , Raíces de Plantas/metabolismo , Hojas de la Planta/metabolismo
12.
Sci Total Environ ; 904: 166287, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591392

RESUMEN

Nutrient supply is important for maintaining a methanotroph and microalgae (MOB-MG) system for biogas valorization. However, there is a lack of understanding regarding how key elements regulate the growth of a MOB-MG coculture. In this study, a MOB-MG coculture with high protein content (0.47 g/g biomass) was established from waste activated sludge using synthetic biogas. An increase in iron availability substantially stimulated the specific growth rate (from 0.18 to 0.62 day-1) and biogas conversion rate (from 26.81 to 106.57 mg-C L-1 day-1) of the coculture. Moreover, the protein content remained high (0.51 g/g biomass), and the total lipid content increased (from 0.09 to 0.14 g/g biomass). Nitrogen limitation apparently constrained the specific growth rate (from 0.64 to 0.28 day-1) and largely reduced the protein content (from 0.51 to 0.31 g/g biomass) of the coculture. Intriguingly, the lipid content remained unchanged after nitrogen was depleted. The eukaryotic community was consistently dominated by MG belonging to Chlorella, while the populations of MOB shifted from Methylococcus/Methylosinus to Methylocystis due to iron and nitrogen amendment. In addition, diverse non-methanotrophic heterotrophs were present in the community. Their presence neither compromised the performance of the coculture system nor affected the protein content of the biomass. However, these heterotrophs may contribute to high carbon conversion efficiency by utilizing the dissolved organic carbon released by MOB and MG. Overall, the findings highlight the vital roles of iron and nitrogen in achieving efficient conversion of biogas, fast growth of cells, and optimal biomass composition in a MOB-MG coculture system.


Asunto(s)
Chlorella , Microalgas , Microalgas/metabolismo , Hierro/metabolismo , Nitrógeno/metabolismo , Biocombustibles , Carbono/metabolismo , Lípidos , Biomasa
13.
Glob Chang Biol ; 29(19): 5666-5676, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37555694

RESUMEN

Rapid urbanization has greatly altered nitrogen (N) cycling from regional to global scales. Compared to natural forests, urban forests receive much more external N inputs with distinctive abundances of stable N isotope (δ15 N). However, the large-scale pattern of soil δ15 N and its imprint on plant δ15 N remain less well understood in urban forests. By collecting topsoil (0-20 cm) and leaf samples from urban forest patches in nine large cities across a north-south transect in eastern China, we analyzed the latitudinal trends of topsoil C:N ratio and δ15 N as well as the correlations between tree leaf δ15 N and topsoil δ15 N. We further explored the spatial variation of topsoil δ15 N explained by corresponding climatic, edaphic, vegetation-associated, and anthropogenic drivers. Our results showed a significant increase of topsoil C:N ratio towards higher latitudes, suggesting lower N availability at higher latitudes. Topsoil δ15 N also increased significantly at higher latitudes, being opposite to the latitudinal trend of soil N availability. The latitudinal trend of topsoil δ15 N was mainly explained by mean annual temperature, mean annual precipitation, and atmospheric deposition of both ammonium and nitrate. Consequently, tree leaf δ15 N showed significant positive correlations with topsoil δ15 N across all sampled plant species and functional types. Our findings reveal a distinctive latitudinal trend of δ15 N in urban forests and highlight an important role of anthropogenic N sources in shaping the large-scale pattern of urban forest 15 N signature.


Asunto(s)
Bosques , Árboles , Isótopos de Nitrógeno , Nitrógeno/análisis , China , Suelo
14.
Environ Res ; 233: 116501, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356529

RESUMEN

The soil carbon (C) and nitrogen (N) availability are important in the regulation of soil C cycling under climate change. Fertilizers alter soil C and N availability, which can affect C balance. However, the impact of fertilizers on C balance in grassland restoration has been equivocal and warrants more research. We determined the direct and indirect effects of the addition of three levels of C (sucrose) (0, 60, and 120 kg C ha-1 yr-1), three levels of N (urea) (0, 50, and 100 kg N ha-1 yr-1), and a combination of C plus N at each of the levels on soil respiration (Rs) dynamics and C balance in an alpine meadow in northern Tibet (4700 m above sea level). This study was undertaken during the middle of the growing season in 2011-2012. The addition of C and/or N stimulated CO2 emission, which was 2-fold greater in 2011 (102-144 g C m-2) than in 2012 (43-54 g C m-2). The rate of Rs increased with the addition of N, but was not affected with the addition of C plus N. Microbial biomass C, dissolved organic C and inorganic N were the main drivers of Rs. We concluded that N addition stimulated Rs to a greater extent than C addition in the short term. The application of fertilizer in the restoration of degraded grassland should be re-considered.


Asunto(s)
Pradera , Nitrógeno , Nitrógeno/análisis , Carbono , Suelo , Fertilizantes , Ecosistema
15.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1235-1243, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236940

RESUMEN

Through symbiosis with plants, arbuscular mycorrhizal (AM) fungi effectively improve the availability of soil nitrogen (N). However, the mechanism through which AM and associated extraradical mycelium affect soil N mineralization remains unknow. We carried out an in situ soil culture experiment by using in-growth cores in plantations of three subtropical tree species, Cunninghamia lanceolata, Schima superba, and Liquidambar formosana. We measured soil physical and chemical properties, net N mineralization rate, and the activities of four kinds of hydrolase (leucine aminopeptidase (LAP), ß-1,4-N-acetylglucosaminidase (NAG), ß-1,4-glucosidase (ßG), cellobiohydrolase (CB)) and two kinds of oxidases (polyphenol oxidase (POX) and peroxidase (PER)) involved in soil organic matter (SOM) mineralization in treatments of mycorrhiza (with absorbing roots and hyphae), hyphae (hyphae only), and control (mycorrhiza-free). The results showed that mycorrhizal treatments significantly affected soil total carbon and pH but did not affect N mineralization rates and all enzymatic activities. Tree species significantly affected net ammonification rate, net N mineralization rate and activities of NAG, ßG, CB, POX and PER. The net N mineralization rate and enzyme activities in the C. lanceolata stand were significantly higher than that in monoculture broad-leaved stands of either S. superba or L. formosana. There was no interactive effect of mycorrhizal treatment and tree species on any of soil properties, nor on enzymatic activities or net N mineralization rates. Soil pH was negatively and significantly correlated with five kinds of enzymatic activities except for LAP, while net N mineralization rate significantly correlated with ammonium nitrogen content, available phosphorus content, and the activity level of ßG, CB, POX, and PER. In conclusion, there was no difference in enzymatic activities and N mineralization rates between rhizosphere and hyphosphere soils of three subtropical tree species in the whole growing season. The activity of particular carbon cycle-related enzymes was closely related to soil N mineralization rate. It is suggested that differences in litter quality and root functional traits among different tree species affect soil enzyme activities and N mineralization rates through organic matter inputs and shaping soil condition.


Asunto(s)
Micorrizas , Árboles , Suelo/química , Nitrógeno , Micelio , Oxidorreductasas , Microbiología del Suelo , Raíces de Plantas/microbiología , Carbono
16.
Sci Total Environ ; 874: 162479, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36858242

RESUMEN

Plant-soil feedback (PSF) and competition influence plant performance, community structure and functions. However, how nutrient availability affects the interaction of PSF, sexual competition and coexistence in dioecious plants is poorly understood. In this study, the strengths of PSF and sexual competition, and their responses to nutrient availability were assessed in dioecious Populus cathayana using a garden experiment. We found that PSF reduced but did not eliminate the inequal sexual competition at low nitrogen (N) availability. Intersexual competition and nutrient limitation induced more negative PSF, which promoted sexual coexistence. PSF and competition were rather related to sexual dimorphism. Female plants experience more positive PSF and intersexual competition under adequate N conditions compared to males; the contrary was true with low N supply. Furthermore, the stability of root exudate networks and soil nutrient availability reflects the possibility of sexual coexistence regulated by PSF. Intersexual interaction promote more stable root exudate profiles and more saccharide secretion at low N supply. Meanwhile, the increased soil N and P mineralization in females with cultivated males explained the possible coexistence between females and males at low nutrient availability. Thus, these results indicate that soil biota can mitigate differences in sexual competitiveness and improve the stability of root exudate networks, consequently promoting sexual coexistence at low nutrient availability.


Asunto(s)
Populus , Populus/fisiología , Suelo/química , Retroalimentación , Plantas , Nitrógeno
17.
Sci Total Environ ; 871: 162152, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36775170

RESUMEN

Due to sewage irrigation, manure fertilizer application or other agricultural activities, antibiotics have been introduced into farmland as an emerging contaminant, existing with other agrochemicals. However, the potential influences of antibiotics on the efficiency of agrochemicals and crops health are still unclear. In this work, the effect of antibiotics on fertilization efficiency and pea yield was evaluated, and the mechanism was explored in view of soil microbiome. Nitrogen utilization and pea yield were decreased by antibiotics. In specific, the weight of seeds decreased 9.5 % by 5 mg/kg antibiotics and decreased 25.1 % by 50 mg/kg antibiotics. For N nutrient in pea, antibiotics resulted in 62.5 %-63.7 % decrease in amino acid content and 8.3 %-35.3 % decrease in inorganic-N content. Further research showed that antibiotics interfered with N cycle in soil, inhibiting urea decomposition and denitrification process by reducing function genes ureC, nirK and norB in soil, thus decreasing N availability. Meanwhile, antibiotics destroyed the enzyme function in N assimilation. This work evaluated the environmental risk of antibiotics from fertilization efficiency and N utilization in crop. Antibiotics could not only affect N cycle, limiting the decomposition of N fertilizer, but also affect N utilization in plants, thus affecting the yield and even the quality of leguminous crops.


Asunto(s)
Contaminantes Ambientales , Microbiota , Suelo/química , Antibacterianos , Pisum sativum , Fertilizantes , Agricultura/métodos , Productos Agrícolas , Nitrógeno/análisis
18.
Plant Biotechnol J ; 21(7): 1320-1342, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36435985

RESUMEN

Nitrogen (N), one of the most important nutrients, limits plant growth and crop yields in sustainable agriculture system, in which phytohormones are known to play essential roles in N availability. Hence, it is not surprising that massive studies about the crosstalk between N and phytohormones have been constantly emerging. In this review, with the intellectual landscape of N and phytohormones crosstalk provided by the bibliometric analysis, we trace the research story of best-known crosstalk between N and various phytohormones over the last 20 years. Then, we discuss how N regulates various phytohormones biosynthesis and transport in plants. In reverse, we also summarize how phytohormones signallings modulate root system architecture (RSA) in response to N availability. Besides, we expand to outline how phytohormones signallings regulate uptake, transport, and assimilation of N in plants. Further, we conclude advanced biotechnology strategies, explain their application, and provide potential phytohormones-regulated N use efficiency (NUE) targets in crops. Collectively, this review provides not only a better understanding on the recent progress of crosstalk between N and phytohormones, but also targeted strategies for improvement of NUE to increase crop yields in future biotechnology breeding of crops.


Asunto(s)
Nitrógeno , Reguladores del Crecimiento de las Plantas , Fitomejoramiento , Productos Agrícolas , Biotecnología
19.
Front Microbiol ; 13: 1093487, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583043

RESUMEN

Changes in soil CO2 and N2O emissions due to climate change and nitrogen input will result in increased levels of atmospheric CO2 and N2O, thereby feeding back into Earth's climate. Understanding the responses of soil carbon and nitrogen emissions mediated by microbe from permafrost peatland to temperature rising is important for modeling the regional carbon and nitrogen balance. This study conducted a laboratory incubation experiment at 15 and 20°C to observe the impact of increasing temperature on soil CO2 and N2O emissions and soil microbial abundances in permafrost peatland. An NH4NO3 solution was added to soil at a concentration of 50 mg N kg-1 to investigate the effect of nitrogen addition. The results indicated that elevated temperature, available nitrogen, and their combined effects significantly increased CO2 and N2O emissions in permafrost peatland. However, the temperature sensitivities of soil CO2 and N2O emissions were not affected by nitrogen addition. Warming significantly increased the abundances of methanogens, methanotrophs, and nirK-type denitrifiers, and the contents of soil dissolved organic carbon (DOC) and ammonia nitrogen, whereas nirS-type denitrifiers, ß-1,4-glucosidase (ßG), cellobiohydrolase (CBH), and acid phosphatase (AP) activities significantly decreased. Nitrogen addition significantly increased soil nirS-type denitrifiers abundances, ß-1,4-N- acetylglucosaminidase (NAG) activities, and ammonia nitrogen and nitrate nitrogen contents, but significantly reduced bacterial, methanogen abundances, CBH, and AP activities. A rising temperature and nitrogen addition had synergistic effects on soil fungal and methanotroph abundances, NAG activities, and DOC and DON contents. Soil CO2 emissions showed a significantly positive correlation with soil fungal abundances, NAG activities, and ammonia nitrogen and nitrate nitrogen contents. Soil N2O emissions showed positive correlations with soil fungal, methanotroph, and nirK-type denitrifiers abundances, and DOC, ammonia nitrogen, and nitrate contents. These results demonstrate the importance of soil microbes, labile carbon, and nitrogen for regulating soil carbon and nitrogen emissions. The results of this study can assist simulating the effects of global climate change on carbon and nitrogen cycling in permafrost peatlands.

20.
Sci Total Environ ; 852: 158309, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030872

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are widespread in subtropical forests and play a crucial role in belowground carbon (C) dynamics. Nitrogen (N) deposition or fertilization may affect AMF and thus the flux of plant-derived C back to the atmosphere via AMF hyphae. However, the contribution of AMF hyphal respiration to soil respiration and the response AMF hyphal respiration to increased soil N availability remain unknown. We studied the effect of N fertilization (0, 50, 100 and 200 kg N ha-1 yr-1) on AMF hyphal respiration, root respiration and heterotrophic (microbial) respiration in a subtropical Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) plantation. We found that short-term N addition did not affect root, AMF hyphal and soil microbial respiration, because soil N availability and extraradical hyphae were not affected by N addition. The AMF hyphal respiration contributed 12 % of total soil respiration and 25 % of the autotrophic respiration. Root, AMF hyphal and soil microbial respiration were positively correlated with soil moisture content but not with soil temperature. Our results indicate that AMF hyphal respiration is a large source of soil respiration, and should be considered in partitioning soil respiration into different components in future studies to better understand the response of soil respiration to N addition.


Asunto(s)
Cunninghamia , Micorrizas , Micorrizas/fisiología , Suelo , Hifa/fisiología , Microbiología del Suelo , Raíces de Plantas/microbiología , Bosques , Nitrógeno , Carbono , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA