Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124043, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38368821

RESUMEN

Molecules with zwitterionic characteristics exhibit significant potential for utilization in nonlinear optics, optoelectronics, and organic lasers owing to their large dipole moments. Recently, the synthesized compound 2,4-bis (4,5-diphenyl-1H-imidazol-2-yl) phenol (2,4-bImP) by Sakai et al. has been noticed for its unique photochromic properties in solvents [J. Phys. Chem. A, 125 (2021), 4784-4792]. The observed fluorescence in chloroform was attributed to the keto tautomer. Based on the excited state intramolecular proton transfer, the photochromism of 2,4-bImP in chloroform was interpreted as zwitterion production. However, the zwitterion with a specific electronic structure can be in resonance with the conventional neutral structure. The impact of the resonance contribution from the zwitterion and the conventional neutral structure on fluorescence attribution was not taken into account in the previous studies. In this investigation, the ESIPT mechanism of the 2,4-bImP in chloroform has been explored using both the density functional theory and the time-dependent density functional theory. The optimized geometric configuration parameters illustrate the molecular resonant properties. The calculated fluorescence spectra on the basis of the optimization results further corroborate that the fluorescence peaks after proton transfer originates from the resonance of the zwitterionic and the neutral configuration. The zwitterionic nature of the molecule was demonstrated by electrostatic potential and atomic dipole modified Hesfeld atomic charge (ADCH) analysis. Furthermore, the characterization of potential energy curves and IR spectrum further verified the resonance of both the zwitterionic and neutral structures. The results reveal that the 2,4-bImP molecule generates the neutral o-quinoid structure and the zwitterionic structure resonance phenomenon following ESIPT. The aforementioned resonance structure offers novel insights into the ascription of fluorescence. These discoveries establish the theoretical foundation for the exploration and development of zwitterions.

2.
Ecol Evol ; 5(7): 1456-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25897385

RESUMEN

The Kerguelen archipelago, isolated in the Southern Ocean, shelters a blue mussel Mytilus metapopulation far from any influence of continental populations or any known hybrid zone. The finely carved coast leads to a highly heterogeneous habitat. We investigated the impact of the environment on the genetic structure in those Kerguelen blue mussels by relating allele frequencies to habitat descriptors. A total sample comprising up to 2248 individuals from 35 locations was characterized using two nuclear markers, mac-1 and Glu-5', and a mitochondrial marker (COI). The frequency data from 9 allozyme loci in 9 of these locations were also reanalyzed. Two other nuclear markers (EFbis and EFprem's) were monomorphic. Compared to Northern Hemisphere populations, polymorphism in Kerguelen blue mussels was lower for all markers except for the exon Glu-5'. At Glu-5', genetic differences were observed between samples from distinct regions (F CT = 0.077), as well as within two regions, including between samples separated by <500 m. No significant differentiation was observed in the AMOVA analyses at the two other markers (mac-1 and COI). Like mac-1, all allozyme loci genotyped in a previous publication, displayed lower differentiation (Jost's D) and F ST values than Glu-5'. Power simulations and confidence intervals support that Glu-5' displays significantly higher differentiation than the other loci (except a single allozyme for which confidence intervals overlap). AMOVA analyses revealed significant effects of the giant kelp Macrocystis and wave exposure on this marker. We discuss the influence of hydrological conditions on the genetic differentiation among regions. In marine organisms with high fecundity and high dispersal potential, gene flow tends to erase differentiation, but this study showed significant differentiation at very small distance. This may be explained by the particular hydrology and the carved coastline of the Kerguelen archipelago, together with spatially variable selection at Glu-5'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA