Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 813
Filtrar
1.
Mater Today Bio ; 28: 101196, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221212

RESUMEN

Peripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration. SKPs were induced to differentiate into neurons and SCs in vitro and incorporated into nerve grafts composed of a biocompatible scaffold including chitosan neural conduit and silk fibroin filaments. In vivo experiments using a rat model of peripheral nerve injury showed that TENGs significantly enhanced nerve regeneration compared to the scaffold control group, catching up with the autograft group. Histological analysis showed improved axonal regrowth, myelination and functional recovery in animals treated with these TENGs. In addition, immunohistochemical staining confirmed the presence of induced neurons and SCs within the regenerated nerve tissue. Our results suggest that SKP-induced neurons and SCs in tissue-engineered nerve grafts have great potential for promoting peripheral nerve regeneration and represent a promising approach for clinical translation in the treatment of peripheral nerve injury. Further optimization and characterization of these engineered constructs is warranted to improve their clinical applicability and efficacy.

2.
J Clin Med ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274325

RESUMEN

BACKGROUND: Injury of the spinal cord causes motor and sensory dysfunction as well as pathological reflexes, leading to paraplegia or tetraplegia. The sequelae of traumatic spinal cord injury (SCI) are a significant burden and impact on healthcare systems. Despite constant progress in medicine, traumatic SCI still remains irreversible. To date, no satisfying treatment that can enable neuronal regeneration and recovery of function at the damaged level has been found. Hundreds of experiments have been conducted on various possibilities of influencing spinal regeneration; some of them have yielded promising results, but unfortunately, the successes obtained in experimental animals have not translated into humans. METHODS: This narrative review article presents the application of extracorporeal shock wave therapy (eSWT) in patients with SCI. The article has been divided into parts: 1) use of extracorporeal shock wave therapy for regeneration of the spinal cord after traumatic spinal cord injury; 2) application of extracorporeal shock wave therapy in spasticity after spinal cord injury. In both cases, the hypotheses of possible mechanisms of action will be described. RESULTS AND CONCLUSIONS: A small number of clinical trials have demonstrated the potential of eSWT to influence the regeneration of the spine, as an innovative, safe, and cost-effective treatment option for patients with SCI. Some reports have shown that eSWT can improve spasticity, walking ability, urological function, quality of life, and independence in daily life.

3.
Regen Ther ; 26: 508-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39161365

RESUMEN

Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation's effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.

4.
J Tissue Eng ; 15: 20417314241265198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092452

RESUMEN

Spiral ganglia neurons (SGNs) impairment can cause deafness. One important therapeutic approach involves utilizing stem cells to restore impaired auditory circuitry. Nevertheless, the inadequate implementation of research methodologies poses a challenge in accurately assessing the functionality of derived cells within the circuit. Here, we describe a novel method for converting human embryonic stem cells (hESCs) into otic neurons (ONs) and assess their functional connectivity using an optogenetic approach with cells or an organotypic slice of rat cochlear nucleus (CN) in coculture. Embryonic stem cell-derived otic neurons (eONs) exhibited SGN marker expression and generated functional synaptic connection when cocultured with cochlear nucleus neurons (CNNs). Synapsin 1 and VGLUT expression are found in the cochlear nucleus of brain slices, where eONs projected processes during the coculture of eONs and CN brain slices. Action potential spikes and INa+/IK+ of CNNs increased in tandem with light stimulations to eONs. These findings provide further evidence that eONs may be a candidate source to treat SGN-deafness.

5.
World Neurosurg ; 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159672

RESUMEN

BACKGROUND: Spinal cord injury (SCI) affects around 18,000 individuals annually, representing nearly one-third of all paralysis cases. Stem cell therapy, a focal point in contemporary neuroregeneration research for SCI treatment, holds potential in leveraging undifferentiated stem cells to regenerate damaged tissues. This study seeks to comprehensively analyze current clinical trials exploring the potential use of stem cells in treating spinal cord injuries. METHODS: A data retrieval approach examined the ClinicalTrials.gov database using the terms "spinal cord injury" and "stem cells." Exclusion criteria eliminated studies not recruiting, terminated prematurely, suspended, withdrawn, or of unknown status. Data for each trial, including ClinicalTrial.gov NCT identifier, title, intervention details, initiation/completion dates, and sample size, were systematically collected. Literature searches on PubMed.gov were conducted for completed trials with results. RESULTS: Thirty clinical trials were analyzed, with 20 completed and six with published results on PubMed.gov. Interventions included 20 biological (66.7%), 6 procedural (20%), and 4 drug interventions (13.3%). Stem cell sources varied, including bone marrow (46.7%), umbilical cells (20%), adipose tissue (20%), embryonic cells (6.7%), and neural cells (6.7%). Trials spanned 2005 to 2022, with 11 (36.7%) commencing in or after 2017. Among six trials with results, 50% used bone marrow-derived stem cells. CONCLUSIONS: The promising potential of stem cells in neuroregenerative SCI treatment necessitates further exploration through large-scale, multicenter clinical trials to enhance understanding and guide wider adoption of this emerging treatment paradigm.

6.
J Clin Med ; 13(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064141

RESUMEN

Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.

7.
Neuron ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39019043

RESUMEN

Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.

8.
Brain Pathol ; : e13280, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38946137

RESUMEN

Demyelination of corticospinal tract neurons contributes to long-term disability after cortical stroke. Nonetheless, poststroke myelin loss has not been addressed as a therapeutic target, so far. We hypothesized that an antibody-mediated inhibition of the Nogo receptor-interacting protein (LINGO-1, leucine-rich repeat and immunoglobulin domain-containing Nogo receptor-interacting protein) may counteract myelin loss, enhance remyelination and axonal growth, and thus promote functional recovery following stroke. To verify this hypothesis, mice were subjected to photothrombotic stroke and received either an antibody against LINGO-1 (n = 19) or a control treatment (n = 18). Behavioral tests were performed to assess the effects of anti-LINGO-1 treatment on the functional recovery. Seven weeks after stroke, immunohistochemical analyses were performed to analyze the effect of anti-LINGO-1 treatment on myelination and axonal loss of corticospinal tract neurons, proliferation of oligodendrocytes and neurogenesis. Anti-LINGO-1 treatment resulted in significantly improved functional recovery (p < 0.0001, repeated measures analysis of variance), and increased neurogenesis in the hippocampus and subventricular zone of the ipsilateral hemisphere (p = 0.0094 and p = 0.032, t-test). Notably, we observed a significant increase in myelin (p = 0.0295, t-test), platelet-derived growth factor receptor α-positive oligodendrocyte precursor cells (p = 0.0356, t-test) and myelinating adenomatous polyposis coli-positive cells within the ipsilateral internal capsule of anti-LINGO-1-treated mice (p = 0.0021, t-test). In conclusion, we identified anti-LINGO-1 as the first neuroregenerative treatment that counteracts poststroke demyelination of corticospinal tract neurons, presumably by increased proliferation of myelin precursor cells, and thereby improves functional recovery. Most importantly, our study presents myelin loss as a novel therapeutic target following stroke.

9.
JOR Spine ; 7(3): e1344, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38957164

RESUMEN

Study Design: Pre-clinical animal experiment. Objective: In this study, we investigated therapeutic effects of silibinin in a spinal cord injury (SCI) model. In SCI, loss of cells due to secondary damage mechanisms exceeds that caused by primary damage. Ferroptosis, which is iron-dependent non-apoptotic cell death, is shown to be influential in the pathogenesis of SCI. Methods: The study was conducted as an in vivo experiment using a total of 78 adult male/female Sprague Dawley rats. Groups were as follows: Sham, SCI, deferoxamine (DFO) treatment, and silibinin treatment. There were subgroups with follow-up periods of 24 h, 72 h, and 6 weeks in all groups. Malondialdehyde (MDA), glutathione (GSH), and Fe2+ levels were measured by spectrophotometry. Glutathione peroxidase-4 (GPX4), ferroportin (FPN), transferrin receptor (TfR1), and 4-hydroxynonenal (4-HNE)-modified protein levels were assessed by Western blotting. Functional recovery was assessed using Basso-Beattie-Bresnahan test. Results: Silibinin achieved significant suppression in MDA and 4-HNE levels compared to the SCI both in 72-h and 6 weeks group (p < 0.05). GSH, GPX4, and FNP levels were found to be significantly higher in the silibinin 24 h, 72 h, and 6 weeks group compared to corresponding SCI groups (p < 0.05). Significant reduction in iron levels was observed in silibinin treated rats in 72 h and 6 weeks group (p < 0.05). Silibinin substantially suppressed TfR1 levels in 24 h and 72 h groups (p < 0.05). Significant difference among recovery capacities was observed as follows: Silibinin > DFO > SCI (p < 0.05). Conclusion: Impact of silibinin on iron metabolism and lipid peroxidation, both of which are features of ferroptosis, may contribute to therapeutic activity. Within this context, our findings posit silibinin as a potential therapeutic candidate possessing antiferroptotic properties in SCI model. Therapeutic agents capable of effectively and safely mitigating ferroptotic cell death hold the potential to be critical points of future clinical investigations.

10.
Front Bioeng Biotechnol ; 12: 1401512, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050683

RESUMEN

Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.

11.
Cureus ; 16(5): e61400, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38953082

RESUMEN

Artificial intelligence (AI) and machine learning (ML) show promise in various medical domains, including medical imaging, precise diagnoses, and pharmaceutical research. In neuroscience and neurosurgery, AI/ML advancements enhance brain-computer interfaces, neuroprosthetics, and surgical planning. They are poised to revolutionize neuroregeneration by unraveling the nervous system's complexities. However, research on AI/ML in neuroregeneration is fragmented, necessitating a comprehensive review. Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, 19 English-language papers focusing on AI/ML in neuroregeneration were selected from a total of 247. Two researchers independently conducted data extraction and quality assessment using the Mixed Methods Appraisal Tool (MMAT) 2018. Eight studies were deemed high quality, 10 moderate, and four low. Primary goals included diagnosing neurological disorders (35%), robotic rehabilitation (18%), and drug discovery (12% each). Methods ranged from analyzing imaging data (24%) to animal models (24%) and electronic health records (12%). Deep learning accounted for 41% of AI/ML techniques, while standard ML algorithms constituted 29%. The review underscores the growing interest in AI/ML for neuroregenerative medicine, with increasing publications. These technologies aid in diagnosing diseases and facilitating functional recovery through robotics and targeted stimulation. AI-driven drug discovery holds promise for identifying neuroregenerative therapies. Nonetheless, addressing existing limitations remains crucial in this rapidly evolving field.

12.
Neurocrit Care ; 41(2): 665-680, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724864

RESUMEN

BACKGROUND: Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS: A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS: Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS: According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.


Asunto(s)
Fármacos Neuroprotectores , Animales , Fármacos Neuroprotectores/farmacología , Isquemia Encefálica/tratamiento farmacológico , Endotelinas/farmacología , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Fragmentos de Péptidos
14.
CNS Neurosci Ther ; 30(5): e14752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775149

RESUMEN

Exosomes possess a significant role in intercellular communications. In the nervous system, various neural cells release exosomes that not only own a role in intercellular communications but also eliminate the waste of cells, maintain the myelin sheath, facilitate neurogenesis, and specifically assist in normal cognitive function. In neurological conditions including Parkinson's disease (PD), Alzheimer's disease (AD), traumatic brain injury (TBI), and stroke, exosomal cargo like miRNAs take part in the sequela of conditions and serve as a diagnostic tool of neurological disorders, too. Exosomes are not only a diagnostic tool but also their inhibition or administration from various sources like mesenchymal stem cells and serum, which have shown a worthy potential to treat multiple neurological disorders. In addition to neurodegenerative manifestations, cognitive deficiencies are an integral part of neurological diseases, and applying exosomes in improving both aspects of these diseases has been promising. This review discusses the status of exosome therapy in improving neurorestorative and cognitive function following neurological disease.


Asunto(s)
Exosomas , Enfermedades del Sistema Nervioso , Exosomas/metabolismo , Exosomas/trasplante , Humanos , Animales , Enfermedades del Sistema Nervioso/terapia , Cognición/fisiología
15.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612847

RESUMEN

Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, ß-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for ß-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of ß-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or ß-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.


Asunto(s)
Astrocitos , Células-Madre Neurales , Animales , Ratones , Campos Electromagnéticos , Proyectos Piloto , Tubulina (Proteína) , Diferenciación Celular , Fenotipo
16.
Cells ; 13(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38607008

RESUMEN

PURPOSE OF THIS REVIEW: Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS: Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY: The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.


Asunto(s)
Nanomedicina , Traumatismos de la Médula Espinal , Humanos , Distribución Tisular , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología , Medicina Regenerativa
17.
Adv Healthc Mater ; 13(18): e2304300, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38589053

RESUMEN

Spinal cord injury (SCI) often leads to a severe permanent disability. A poor inflammatory microenvironment and nerve electric signal conduction block are the main reasons for difficulty in spinal cord nerve regeneration. In this study, black phosphorus (BP) and glycyrrhizic acid (GA) are integrated into methacrylate-modified silk fibroin (SF) to construct a bifunctional injectable hydrogel (SF/BP/GA) with appropriate conductivity and the ability to inhibit inflammation to promote neuronal regeneration after SCI. This work discovers that the SF/BP/GA hydrogel can reduce the oxidative damage mediated by oxygen free radicals, promote the polarization of macrophages toward the anti-inflammatory M2 phenotype, reduce the expression of inflammatory factors, and improve the inflammatory microenvironment. Moreover, it induces neural stem cell (NSC) differentiation and neurosphere formation, restores signal conduction at the SCI site in vivo, and ameliorates motor function in mice with spinal cord hemisection, revealing a significant neural repair effect. An injectable, electroconductive, free-radical-scavenging hydrogel is a promising therapeutic strategy for SCI repair.


Asunto(s)
Fibroínas , Ácido Glicirrínico , Hidrogeles , Nanocompuestos , Fósforo , Traumatismos de la Médula Espinal , Animales , Fibroínas/química , Fibroínas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratones , Fósforo/química , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Nanocompuestos/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/química , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Conductividad Eléctrica , Regeneración de la Medula Espinal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
18.
Biomedicines ; 12(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38540256

RESUMEN

Traumatic injury to the brain and spinal cord (neurotrauma) is a common event across populations and often causes profound and irreversible disability. Pathophysiological responses to trauma exacerbate the damage of an index injury, propagating the loss of function that the central nervous system (CNS) cannot repair after the initial event is resolved. The way in which function is lost after injury is the consequence of a complex array of mechanisms that continue in the chronic phase post-injury to prevent effective neural repair. This review summarises the events after traumatic brain injury (TBI) and spinal cord injury (SCI), comprising a description of current clinical management strategies, a summary of known cellular and molecular mechanisms of secondary damage and their role in the prevention of repair. A discussion of current and emerging approaches to promote neuroregeneration after CNS injury is presented. The barriers to promoting repair after neurotrauma are across pathways and cell types and occur on a molecular and system level. This presents a challenge to traditional molecular pharmacological approaches to targeting single molecular pathways. It is suggested that novel approaches targeting multiple mechanisms or using combinatorial therapies may yield the sought-after recovery for future patients.

19.
Biomedicines ; 12(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540276

RESUMEN

Stroke is the leading cause of adult disability worldwide. The majority of stroke survivors are left with devastating functional impairments for which few treatment options exist. Recently, a number of studies have used ectopic expression of transcription factors that direct neuronal cell fate with the intention of converting astrocytes to neurons in various models of brain injury and disease. While there have been reports that question whether astrocyte-to-neuron conversion occurs in vivo, here, we have asked if ectopic expression of the transcription factor Neurod1 is sufficient to promote improved functional outcomes when delivered in the subacute phase following endothelin-1-induced sensory-motor cortex stroke. We used an adeno-associated virus to deliver Neurod1 from the short GFAP promoter and demonstrated improved functional outcomes as early as 28 days post-stroke and persisting to at least 63 days post-stroke. Using Cre-based cell fate tracking, we showed that functional recovery correlated with the expression of neuronal markers in transduced cells by 28 days post-stroke. By 63 days post-stroke, the reporter-expressing cells comprised ~20% of all the neurons in the perilesional cortex and expressed markers of cortical neuron subtypes. Overall, our findings indicate that ectopic expression of Neurod1 in the stroke-injured brain is sufficient to enhance neural repair.

20.
Front Immunol ; 15: 1354479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444856

RESUMEN

Introduction: The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods: In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results: We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-ß1 (M(IL-10+TGF-ß1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-ß1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-ß1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-ß1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion: Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.


Asunto(s)
Interleucina-10 , Traumatismos de la Médula Espinal , Humanos , Animales , Ratones , Factor de Crecimiento Transformador beta1 , Proteómica , Secretoma , Traumatismos de la Médula Espinal/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA