Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neurol Int ; 16(2): 334-348, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38525704

RESUMEN

The Golgi apparatus is an intracellular organelle that modifies cargo, which is transported extracellularly through the nucleus, endoplasmic reticulum, and plasma membrane in order. First, the general function of the Golgi is reviewed and, then, Golgi stress signaling is discussed. In addition to the six main Golgi signaling pathways, two pathways that have been increasingly reported in recent years are described in this review. The focus then shifts to neurological disorders, examining Golgi stress reported in major neurological disorders, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. The review also encompasses findings related to other diseases, including hypomyelinating leukodystrophy, frontotemporal spectrum disorder/amyotrophic lateral sclerosis, microcephaly, Wilson's disease, and prion disease. Most of these neurological disorders cause Golgi fragmentation and Golgi stress. As a result, strong signals may act to induce apoptosis.

2.
J Mol Graph Model ; 128: 108715, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38306790

RESUMEN

Parkinson's disease (PD) is the most prevalent type of incurable movement disorder. Recent research findings propose that the familial PD-associated molecule DJ-1 exists in cerebrospinal fluid (CSF) and that its levels may be altered as Parkinson's disease advances. By using a molecularly imprinted polymer (MIP) as an artificial receptor, it becomes possible to create a functional MIP with predetermined selectivity for various templates, particularly for the DJ-1 biomarker associated with Parkinson's disease. It mostly depends on molecular recognition via interactions between functional monomers and template molecules. So, the computational methods for the appropriate choice of functional monomers for creating molecular imprinting electropolymers (MIEPs) with particular recognition for the detection of DJ-1, a pivotal biomarker involved in PD, are undertaken in this study. Here, molecular docking, molecular dynamics simulations (MD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods, and quantum mechanical calculation have been applied to investigate the intermolecular interaction between DJ-1 and several functional electropentamers, viz., polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(o-aminophenol) (POAP), and polythiophene (PTS). In this context, the electropentamers were selected to mimic the imprinted electropolymer system. We analyzed the most stable configurations of the formed complexes involving DJ-1 and electropentamers as a model system for MIEPs. Among these, PEDOT exhibited a more uniform arrangement around DJ-1, engaging in numerous van der Waals, H-bond, electrostatic, and hydrophobic interactions. Hence, it can be regarded as a preferable choice for synthesizing a MIP for DJ-1 recognition. Thus, it will aid in selecting a suitable functional monomer, which is of greater significance in the design and development of selective DJ-1/MIP sensors.


Asunto(s)
Impresión Molecular , Enfermedad de Parkinson , Humanos , Polímeros/química , Simulación del Acoplamiento Molecular , Impresión Molecular/métodos , Pirroles , Simulación de Dinámica Molecular , Biomarcadores
5.
Antioxidants (Basel) ; 11(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36009192

RESUMEN

(1) Background: The N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory currents leading to depolarization. Postsynaptic NMDARs are ionotropic glutamate receptors that mediate excitatory glutamate or glycine signaling in the CNS and play a primary role in long-term potentiation, which is a major form of use-dependent synaptic plasticity. The overstimulation of NMDARs mediates excessive Ca2+ influx to postsynaptic neurons and facilitates more production of ROS, which induces neuronal apoptosis. (2) Methods: To confirm the induced inward currents by the coapplication of glutamate and ergotamine on NMDARs, a two-electrode voltage clamp (TEVC) was conducted. The ergotamine-mediated inhibitory effects of NR1a/NR2A subunits were explored among four different kinds of recombinant NMDA subunits. In silico docking modeling was performed to confirm the main binding site of ergotamine. (3) Results: The ergotamine-mediated inhibitory effect on the NR1a/NR2A subunits has concentration-dependent, reversible, and voltage-independent properties. The major binding sites were V169 of the NR1a subunit and N466 of the NR2A subunit. (4) Conclusion: Ergotamine effectively inhibited NR1a/NR2A subunit among the subtypes of NMDAR. This inhibition effect can prevent excessive Ca2+ influx, which prevents neuronal death.

6.
CNS Neurol Disord Drug Targets ; 21(10): 977-993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35023462

RESUMEN

Herbal medicines are being used by humans since the oldest civilizations and have been an integral part of traditional and alternative medicines. In recent times, pharmaceutical and biomedical scientists are taking interest in developing nutraceutical-based medicines to overcome the side effects and adverse drug reactions caused by allopathic medicines. Nutraceuticals have started occupying the global market. Nutraceuticals have gained widespread acceptance due to their efficacy in treating difficult to treat diseases, low toxicity, low cost, easy accessibility, etc. Safety and efficacy are other important factors in the commercialization process of nutraceuticals. Different novel advanced drug delivery systems have been constantly studied to improve the efficacy and bioavailability of medicines obtained from herbal sources. The transdermal drug delivery system provides a potent alternative to the conventional method of using nutraceuticals. The development of transdermal system-based nutraceuticals could provide the advantage of enhanced bioavailability, improved solubility, bypass of the first-pass metabolism, and targeted delivery of drugs in brain-related disorders. It additionally provides the advantage of being non-invasive. This article reviews the potential effects of various nutraceuticals in brain-related disorders as well as trends in transdermal nano-systems to deliver such nutraceuticals. We have also focused on advantages, applications as well as recent United States-based patents which emphasize emerging interest towards transdermal nutraceuticals in brain disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Suplementos Dietéticos , Disponibilidad Biológica , Sistemas de Liberación de Medicamentos , Humanos
7.
Cell Cycle ; 21(3): 219-227, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34927545

RESUMEN

High levels of transcription and alternative splicing are recognized hallmarks of gene expression in the testis and largely driven by cells in meiosis. Because of this, the male meiosis stage of the cell cycle is often viewed as having a relatively permissive environment for gene expression. In this review, we highlight recent findings that identify the RNA binding protein RBMXL2 as essential for male meiosis. RBMXL2 functions as a "guardian of the transcriptome" that protects against the use of aberrant (or "cryptic") splice sites that would disrupt gene expression. This newly discovered protective role during meiosis links with a wider field investigating mechanisms of cryptic splicing control that protect neurons from amyotrophic lateral sclerosis and Alzheimer's disease. We discuss how the mechanism repressing cryptic splicing patterns during meiosis evolved, and why it may be essential for sperm production and male fertility.


Asunto(s)
Infertilidad Masculina , Enfermedades del Sistema Nervioso , Empalme Alternativo/genética , Femenino , Humanos , Infertilidad Masculina/genética , Masculino , Neuronas , Empalme del ARN
8.
Bio Protoc ; 11(5): e3939, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33796613

RESUMEN

The high attrition rate in drug development processes calls for additional human-based model systems. However, in the context of brain disorders, sampling live neuronal cells for compound testing is not applicable. The use of human induced pluripotent stem cells (iPSCs) has revolutionized the field of neuronal disease modeling and drug discovery. Thanks to the development of iPSC-based neuronal differentiation protocols, including tridimensional cerebral organoids, it is now possible to molecularly dissect human neuronal development and human brain disease pathogenesis in a dish. These approaches may allow dissecting patient-specific treatment efficacy in a disease-relevant cellular context. For drug discovery approaches, however, a highly reproducible and cost-effective cell model is desirable. Here, we describe a step-by-step process for generating robust and expandable neural progenitor cells (NPCs) from human iPSCs. NPCs generated with this protocol are homogeneous and highly proliferative. These features make NPCs suitable for the development of high-throughput compound screenings for drug discovery. Human iPSC-derived NPCs show a metabolism dependent on mitochondrial activity and can therefore be used also to investigate neurological disorders in which mitochondrial function is affected. The protocol covers all steps necessary for the preparation, culture, and characterization of human iPSC-derived NPCs. Graphic abstract: Schematic of the protocol for the generation of human iPSC-derived NPCs.

9.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32207685

RESUMEN

Rett syndrome is an incurable neurodevelopmental disorder caused by mutations in the gene encoding for methyl-CpG binding-protein 2 (MeCP2). Gene therapy for this disease presents inherent hurdles since MECP2 is expressed throughout the brain and its duplication leads to severe neurological conditions as well. Herein, we use the AAV-PHP.eB to deliver an instability-prone Mecp2 (iMecp2) transgene cassette which, increasing RNA destabilization and inefficient protein translation of the viral Mecp2 transgene, limits supraphysiological Mecp2 protein levels. Intravenous injections of the PHP.eB-iMecp2 virus in symptomatic Mecp2 mutant mice significantly improved locomotor activity, lifespan and gene expression normalization. Remarkably, PHP.eB-iMecp2 administration was well tolerated in female Mecp2 mutant or in wild-type animals. In contrast, we observed a strong immune response to the transgene in treated male Mecp2 mutant mice that was overcome by immunosuppression. Overall, PHP.eB-mediated delivery of iMecp2 provided widespread and efficient gene transfer maintaining physiological Mecp2 protein levels in the brain.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Síndrome de Rett/genética , Animales , Modelos Animales de Enfermedad , Expresión Génica/fisiología , Regulación de la Expresión Génica , Terapia Genética/métodos , Ratones Transgénicos , Transgenes/genética
10.
Biophys Rev ; 11(3): 471-482, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31115864

RESUMEN

In this review, we focus on the kinesin-3 family molecular motor protein UNC-104 and its regulatory protein ARL-8. UNC-104, originally identified in Caenorhabditis elegans (C. elegans), has a primary role transporting synaptic vesicle precursors (SVPs). Although in vitro single-molecule experiments have been performed to primarily investigate the kinesin motor domain, these have not addressed the in vivo reality of the existence of regulatory proteins, such as ARL-8, that control kinesin attachment to/detachment from cargo vesicles, which is essential to the overall transport efficiency of cargo vesicles. To quantitatively understand the role of the regulatory protein, we review the in vivo physical parameters of UNC-104-mediated SVP transport, including force, velocity, run length and run time, derived from wild-type and arl-8-deletion mutant C. elegans. Our future aim is to facilitate the construction of a consensus physical model to connect SVP transport with pathologies related to deficient synapse construction caused by the deficient UNC-104 regulation. We hope that the physical parameters of SVP transport summarized in this review become a useful guide for the development of such model.

11.
Nutrients ; 11(4)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959761

RESUMEN

Probiotics are defined as live microorganisms that when administered in adequate amounts confer a health benefit to the host. Their positive supplementation outcomes on several gastrointestinal disorders are well defined. Nevertheless, their actions are not limited to the gut, but may also impart their beneficial effects at distant sites and organs. In this regard, in this review article we: (i) comprehensively describe the main mechanisms of action of probiotics at distant sites, including bones, skin, and brain; (ii) critically present their therapeutic potential against bone, skin, and neuronal diseases (e.g., osteoporosis, non-healing wounds and autoimmune skin illnesses, mood, behavior, memory, and cognitive impairments); (iii) address the current gaps in the preclinical and clinical research; and (iv) indicate new research directions and suggest future investigations.


Asunto(s)
Enfermedades Óseas/terapia , Enfermedades del Sistema Nervioso Central/terapia , Probióticos/farmacología , Enfermedades de la Piel/terapia , Cicatrización de Heridas , Humanos
12.
Biophys Rev ; 10(5): 1311-1321, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30019204

RESUMEN

The fluctuation theorem is a representative theorem in non-equilibrium statistical physics actively studied in the 1990s. Relating to entropy production in non-equilibrium states, the theorem has been used to estimate the driving power of motor proteins from fluctuation in their motion. In this review, usage of the fluctuation theorem in experiments on motor proteins is illustrated for biologists, especially those who study mechanobiology, in which force measurement is a central issue. We first introduce the application of the fluctuation theorem in measuring the rotary torque of the rotary motor protein F1-ATPase. Next, as an extension of this application, a recent trial estimating the force generated during cargo transport in vivo by the microtubule motors kinesin and dynein is introduced. Elucidation of the physical mechanism of such transport is important, especially for neurons, in which deficits in cargo transport are deeply related to neuronal diseases. Finally, perspectives on the fluctuation theorem as a new technique in the field of neuroscience are discussed.

13.
Chinese Critical Care Medicine ; (12): 902-906, 2018.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-703737

RESUMEN

Autophagy is a dynamic process that allows recycling of long-lived proteins and damaged organelles into biosynthetic materials for maintaining the normal cellular homeostasis. Recently, accumulating evidence has indicated that autophagy played important roles in the pathogenesis of neuronal diseases. In this article, the research progress of autophagy in the pathogenesis and regulation mechanism of common nervous system diseases were reviewed to deepen the understanding of autophagy, and arouse researchers' attention on dynamic regulation of autophagy and alleviating autophagic flow injury.

14.
Exp Biol Med (Maywood) ; 242(11): 1136-1141, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28485684

RESUMEN

A growing body of evidence indicates that circular RNAs are not simply a side product of splicing but a new class of noncoding RNAs in higher eukaryotes. The progression for the studies of circular RNAs is accelerated by combination of several advanced technologies such as next generation sequencing, gene silencing (small interfering RNAs) and editing (CRISPR/Cas9). More and more studies showed that dysregulated expression of circular RNAs plays critical roles during the development of several human diseases. Herein, we review the current advance of circular RNAs for their biosynthesis, molecular functions, and implications in human diseases. Impact statement The accumulating evidence indicate that circular RNA (circRNA) is a novel class of noncoding RNA with diverse molecular functions. Our review summarizes the current hypotheses for the models of circRNA biosynthesis including the direct interaction between upstream and downstream introns and lariat-driven circularization. In addition, molecular functions such as a decoy of microRNA (miRNA) termed miRNA sponge, transcriptional regulator, and protein-like modulator are also discussed. Finally, we reviewed the potential roles of circRNAs in neural system, cardiovascular system as well as cancers. These should provide insightful information for studying the regulation and functions of circRNA in other model of human diseases.


Asunto(s)
Regulación de la Expresión Génica , ARN no Traducido/metabolismo , ARN/metabolismo , Animales , Silenciador del Gen , Marcación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN/genética , ARN Circular , ARN no Traducido/genética
15.
Exp Biol Med (Maywood) ; 241(2): 115-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26264442

RESUMEN

Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse.


Asunto(s)
Estructuras de la Membrana Celular/metabolismo , Estructuras de la Membrana Celular/ultraestructura , Sustancias Macromoleculares/metabolismo , Sustancias Macromoleculares/ultraestructura , Proteínas de la Membrana/ultraestructura , Neuronas/fisiología , Transmisión Sináptica , Animales , Estructuras de la Membrana Celular/química , Humanos , Sustancias Macromoleculares/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica , Modelos Biológicos , Conformación Proteica , Dispersión del Ángulo Pequeño
16.
Int Rev Neurobiol ; 115: 51-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25131542

RESUMEN

Neurobehavioral and psychiatric disorders are complex diseases with a strong heritable component; however, to date, genome-wide association studies failed to identify the genetic loci involved in the etiology of these brain disorders. Recently, transgenerational epigenetic inheritance has emerged as an important factor playing a pivotal role in the inheritance of brain disorders. This field of research provides evidence that environmentally induced epigenetic changes in the germline during embryonic development can be transmitted for multiple generations and may contribute to the etiology of brain disease heritability. In this review, we discuss some of the most recent findings on transgenerational epigenetic inheritance. We particularly discuss the findings on the epigenetic mechanisms involved in the heritability of alcohol-induced neurobehavioral disorders such as fetal alcohol spectrum disorders.


Asunto(s)
Encefalopatías/genética , Encefalopatías/fisiopatología , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Animales , Metilación de ADN , Humanos
17.
World J Stem Cells ; 5(4): 163-71, 2013 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-24179604

RESUMEN

Pluripotent stem cells, which are capable of differentiating in various species of cells, are hoped to be donor cells in transplantation in regenerative medicine. Embryonic stem (ES) cells and induced pluripotent stem cells have the potential to differentiate in approximately all species of cells. However, the proliferating ability of these cells is high and the cancer formation ability is also recognized. In addition, ethical problems exist in using ES cells. Somatic stem cells with the ability to differentiate in various species of cells have been used as donor cells for neuronal diseases, such as amyotrophic lateral sclerosis, spinal cord injury, Alzheimer disease, cerebral infarction and congenital neuronal diseases. Human mesenchymal stem cells derived from bone marrow, adipose tissue, dermal tissue, umbilical cord blood and placenta are usually used for intractable neuronal diseases as somatic stem cells, while neural progenitor/stem cells and retinal progenitor/stem cells are used for a few congenital neuronal diseases and retinal degenerative disease, respectively. However, non-treated somatic stem cells seldom differentiate to neural cells in recipient neural tissue. Therefore, the contribution to neuronal regeneration using non-treated somatic stem cells has been poor and various differential trials, such as the addition of neurotrophic factors, gene transfer, peptide transfer for neuronal differentiation of somatic stem cells, have been performed. Here, the recent progress of regenerative therapies using various somatic stem cells is described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA