Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38358799

RESUMEN

The Wnt/ß-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of ß-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/ß-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.


Asunto(s)
Receptores Frizzled , Glucógeno Sintasa Quinasa 3 , beta Catenina , Humanos , beta Catenina/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Mesencéfalo , Sistema Nervioso/metabolismo , Vía de Señalización Wnt , Animales , Ratas
2.
Cells ; 12(4)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36831281

RESUMEN

POU genes are a family of evolutionarily conserved transcription factors with key functions in cell type specification and neurogenesis. In vitro experiments have indicated that the expression of some POU genes is controlled by the intercellular signaling molecule retinoic acid (RA). In this work, we aimed to characterize the roles of RA signaling in the regulation of POU genes in vivo. To do so, we studied POU genes during the development of the cephalochordate amphioxus, an animal model crucial for understanding the evolutionary origins of vertebrates. The expression patterns of amphioxus POU genes were assessed at different developmental stages by chromogenic in situ hybridization and hybridization chain reaction. Expression was further assessed in embryos subjected to pharmacological manipulation of endogenous RA signaling activity. In addition to a detailed description of the effects of these treatments on amphioxus POU gene expression, our survey included the first description of Pou2 and Pou6 expression in amphioxus embryos. We found that Pit-1, Pou2, Pou3l, and Pou6 expression are not affected by alterations of endogenous RA signaling levels. In contrast, our experiments indicated that Brn1/2/4 and Pou4 expression are regulated by RA signaling in the endoderm and the nerve cord, respectively. The effects of the treatments on Pou4 expression in the nerve cord revealed that, in developing amphioxus, RA signaling plays a dual role by (1) providing anteroposterior patterning information to neural cells and (2) specifying neural cell types. This finding is coherent with a terminal selector function of Pou4 for GABAergic neurons in amphioxus and represents the first description of RA-induced changes in POU gene expression in vivo.


Asunto(s)
Anfioxos , Tretinoina , Animales , Tretinoina/farmacología , Anfioxos/genética , Neurogénesis , Factores de Transcripción/metabolismo , Neuronas/metabolismo
3.
Cells ; 13(1)2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38201225

RESUMEN

The Hedgehog (Hh) pathway plays a crucial role in embryonic development, acting both as a morphogenic signal that organizes tissue formation and a potent mitogenic signal driving cell proliferation. Dysregulated Hh signaling leads to various developmental defects in the brain. This article aims to review the roles of Hh signaling in the development of the neocortex in the mammalian brain, focusing on its regulation of neural progenitor proliferation and neuronal production. The review will summarize studies on genetic mouse models that have targeted different components of the Hh pathway, such as the ligand Shh, the receptor Ptch1, the GPCR-like transducer Smo, the intracellular transducer Sufu, and the three Gli transcription factors. As key insights into the Hh signaling transduction mechanism were obtained from mouse models displaying neural tube defects, this review will also cover some studies on Hh signaling in neural tube development. The results from these genetic mouse models suggest an intriguing hypothesis that elevated Hh signaling may play a role in the gyrification of the brain in certain species. Additionally, the distinctive production of GABAergic interneurons in the dorsal cortex in the human brain may also be linked to the extension of Hh signaling from the ventral to the dorsal brain region. Overall, these results suggest key roles of Hh signaling as both a morphogenic and mitogenic signal during the forebrain development and imply the potential involvement of Hh signaling in the evolutionary expansion of the neocortex.


Asunto(s)
Proteínas Hedgehog , Neocórtex , Femenino , Embarazo , Humanos , Animales , Ratones , Desarrollo Embrionario , Morfogénesis , Evolución Biológica , Mamíferos
4.
Adv Neurobiol ; 28: 3-44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36066819

RESUMEN

Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.


Asunto(s)
Neuronas Motoras , Médula Espinal , Humanos , Músculos , Neurogénesis
5.
Curr Top Dev Biol ; 146: 25-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35152985

RESUMEN

This review reports recent findings on the specification and patterning of neurons that establish the larval nervous system of the sea urchin embryo. Neurons originate in three regions of the embryo. Perturbation analyses enabled construction of gene regulatory networks controlling the several neural cell types. Many of the mechanisms described reflect shared features of all metazoans and others are conserved among deuterostomes. This nervous system with a very small number of neurons supports the feeding and swimming behaviors of the larva until metamorphosis when an adult nervous system replaces that system.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Erizos de Mar , Animales , Redes Reguladoras de Genes , Larva/metabolismo , Sistema Nervioso , Erizos de Mar/genética , Erizos de Mar/metabolismo
6.
Mol Cell Biol ; 41(8): e0010421, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33972392

RESUMEN

N6-Methyladenosine (m6A) is the most prevalent internal RNA modification and has a widespread impact on mRNA stability and translation. Methyltransferase-like 3 (Mettl3) is a methyltransferase responsible for RNA m6A modification, and it is essential for early embryogenesis before or during gastrulation in mice and zebrafish. However, due to the early embryonic lethality, loss-of-function phenotypes of Mettl3 beyond gastrulation, especially during neurulation stages when spatial neural patterning takes place, remain elusive. Here, we address multiple roles of Mettl3 during Xenopus neurulation in anteroposterior neural patterning, neural crest specification, and neuronal cell differentiation. Knockdown of Mettl3 causes anteriorization of neurulae and tailbud embryos along with the loss of neural crest and neuronal cells. Knockdown of the m6A reader Ythdf1 and mRNA degradation factors, such as 3' to 5' exonuclease complex component Lsm1 or mRNA uridylation enzyme Tut7, also show similar neural patterning defects, suggesting that m6A-dependent mRNA destabilization regulates spatial neural patterning in Xenopus. We also address that canonical WNT signaling is inhibited in Mettl3 morphants, which may underlie the neural patterning defects of the morphants. Altogether, this study reveals functions of Mettl3 during spatial neural patterning in Xenopus.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Metiltransferasas/metabolismo , Nucleotidiltransferasas/metabolismo , ARN/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Línea Celular Tumoral , Metiltransferasas/genética , Nucleotidiltransferasas/genética , Estabilidad del ARN/fisiología , Vía de Señalización Wnt/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Pez Cebra/metabolismo
7.
Cell Stem Cell ; 28(2): 343-355.e5, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33545081

RESUMEN

Human pluripotent stem cells show considerable promise for applications in regenerative medicine, including the development of cell replacement paradigms for the treatment of Parkinson's disease. Protocols have been developed to generate authentic midbrain dopamine (mDA) neurons capable of reversing dopamine-related deficits in animal models of Parkinson's disease. However, the generation of mDA neurons at clinical scale suitable for human application remains an important challenge. Here, we present an mDA neuron derivation protocol based on a two-step WNT signaling activation strategy that improves expression of midbrain markers, such as Engrailed-1 (EN1), while minimizing expression of contaminating posterior (hindbrain) and anterior (diencephalic) lineage markers. The resulting neurons exhibit molecular, biochemical, and electrophysiological properties of mDA neurons. Cryopreserved mDA neuron precursors can be successfully transplanted into 6-hydroxydopamine (6OHDA) lesioned rats to induce recovery of amphetamine-induced rotation behavior. The protocol presented here is the basis for clinical-grade mDA neuron production and preclinical safety and efficacy studies.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Embrionarias Humanas , Animales , Diferenciación Celular , Mesencéfalo , Ratas , Vía de Señalización Wnt
8.
Tissue Eng Part A ; 26(7-8): 419-431, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686622

RESUMEN

The human brain formation involves complicated processing, which is regulated by a gene regulatory network influenced by different signaling pathways. The cross-regulatory interactions between elements of different pathways affect the process of cell fate assignment during neural and astroglial tissue patterning. In this study, the interactions between Wnt and Notch pathways, the two major pathways that influence neural and astroglial differentiation of human induced pluripotent stem cells (hiPSCs) individually, were investigated. In particular, the synergistic effects of Wnt-Notch pathway on the neural patterning processes along the anterior-posterior or dorsal-ventral axis of hiPSC-derived cortical spheroids were explored. The human cortical spheroids derived from hiPSCs were treated with Wnt activator CHIR99021 (CHIR), Wnt inhibitor IWP4, and Notch inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester [DAPT]) individually, or in combinations (CHIR + DAPT, IWP4 + DAPT). The results suggest that CHIR + DAPT can promote Notch signaling, similar or higher than CHIR alone, whereas IWP4 + DAPT reduces Notch activity compared to IWP4 alone. Also, CHIR + DAPT promoted hindbrain marker HOXB4 expression more consistently than CHIR alone, while IWP4 + DAPT promoted Olig2 expression, indicating the synergistic effects distinctly different from that of the individual small molecule. In addition, IWP4 simultaneously promoted dorsal and ventral identity. The patterned neural spheroids can be switched for astroglial differentiation using bone morphogenetic protein 4. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from hiPSCs for disease modeling, drug screening, as well as for hiPSC-based therapies. Impact Statement Wnt signaling plays a central role in neural patterning of human pluripotent stem cells. It can interact with Notch signaling in defining dorsal-ventral and rostral-caudal (or anterior-posterior) axis of brain organoids. This study investigates novel Wnt and Notch interactions (i.e., Wntch) in neural patterning of dorsal forebrain spheroids or organoids derived from human induced pluripotent stem cells. The synergistic effects of Wnt activator or inhibitor with Notch inhibitor were observed. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from human stem cells for disease modeling and drug screening, as well as for stem cell-based therapies. The results can be used to establish better in vitro culture methods for efficiently mimicking in vivo structure of central nervous system.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Vía de Señalización Wnt/fisiología , Astrocitos/citología , Astrocitos/metabolismo , Western Blotting , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores Notch/metabolismo
9.
Cell Rep ; 28(2): 541-553.e4, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291587

RESUMEN

Sonic Hedgehog (Shh) signaling plays crucial roles in patterning the ventral neural tube, which is transformed into opposing gradients of repressor and activator forms of Glis. Here, we show that the fine-tuning of the shape of the Gli gradients through non-proteolytic ubiquitination-mediated nuclear exportation plays an important role in the control of local neural cell fate. Loss of RNF220, a ventral neural-specific ubiquitin E3 ligase, leads to ventral expansion of the intermediate V0 and dorsal expansion of the ventral V3 neurons, while reducing the V1, V2, and motor neurons between them. We show that RNF220 interacts with all Glis, either in their activator or repressor forms; induces their K63-linked ubiquitination; and promotes their nuclear export, likely by unmasking a nuclear export signal in the zinc finger domain. We propose that RNF220 works to refine the Gli gradients during neural patterning by limiting the effective Gli levels in the nucleus.


Asunto(s)
Proteínas Hedgehog/metabolismo , Neuronas Motoras/metabolismo , Ubiquitinación/genética , Animales , Diferenciación Celular , Humanos , Ratones , Ratones Noqueados , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 116(26): 12925-12932, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31189599

RESUMEN

A defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown. Here we explore these questions by investigating an indirect-developing enteropneust from the hemichordate phylum, which together with echinoderms form a sister group of the chordates. We found that in the hemichordate larva, BMP signaling is required for DV patterning and is sufficient to repress neurogenesis. We also found that transient overactivation of BMP signaling during gastrulation concomitantly blocked mouth formation and centralized the nervous system to the ventral ectoderm in both hemichordate and sea urchin larvae. Moreover, this mouthless, neurogenic ventral ectoderm displayed a medial-to-lateral organization similar to that of the chordate neural plate. Thus, indirect-developing deuterostomes use BMP signaling in DV and neural patterning, and an elevated BMP level during gastrulation drives pronounced morphological changes reminiscent of a DV inversion. These findings provide a mechanistic basis to support the hypothesis that an inverse chordate body plan emerged from an indirect-developing ancestor by tinkering with BMP signaling.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Proteínas Morfogenéticas Óseas/fisiología , Cordados no Vertebrados/embriología , Gastrulación/fisiología , Animales , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Larva/crecimiento & desarrollo , Sistema Nervioso/embriología , Filogenia , Erizos de Mar/embriología
11.
Dev Genes Evol ; 229(2-3): 43-52, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30825002

RESUMEN

One of the earliest patterning events in the vertebrate neural plate is the specification of mes/r1, the territory comprising the prospective mesencephalon and the first hindbrain rhombomere. Within mes/r1, an interface of gene expression defines the midbrain-hindbrain boundary (MHB), a lineage restriction that separates the mesencephalon and rhombencephalon. wnt1 is critical to mes/r1 development and functions within the MHB as a component of the MHB gene regulatory network (GRN). Despite its importance to these critical and early steps of vertebrate neurogenesis, little is known about the factors responsible for wnt1 transcriptional regulation. In the zebrafish, wnt1 and its neighboring paralog, wnt10b, are expressed in largely overlapping patterns, suggesting co-regulation. To understand wnt1 and wnt10b transcriptional control, we used a comparative genomics approach to identify relevant enhancers. We show that the wnt1-wnt10b locus contains multiple cis-regulatory elements that likely interact to generate the wnt1 and wnt10b expression patterns. Two of 11 conserved enhancers tested show activity restricted to the midbrain and MHB, an activity that is conserved in the distantly related spotted gar orthologous elements. Three non-conserved elements also play a likely role in wnt1 regulation. The identified enhancers display dynamic modes of chromatin accessibility, suggesting controlled deployment during embryogenesis. Our results suggest that the control of wnt1 and wnt10b expression is under complex regulation involving the interaction of multiple enhancers.


Asunto(s)
Encéfalo/embriología , Elementos Reguladores de la Transcripción , Proteínas Wnt/genética , Proteína Wnt1/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Animales , Cromatina , Embrión no Mamífero/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces/embriología , Peces/genética , Regulación del Desarrollo de la Expresión Génica , Genómica , Ratones , Regiones Promotoras Genéticas , Proteínas Wnt/metabolismo , Proteína Wnt1/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
12.
Dev Biol ; 448(2): 88-100, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30583796

RESUMEN

The ascidian neural plate consists of a defined number of identifiable cells organized in a grid of rows and columns, representing a useful model to investigate the molecular mechanisms controlling neural patterning in chordates. Distinct anterior brain lineages are specified via unique combinatorial inputs of signalling pathways with Nodal and Delta-Notch signals patterning along the medial-lateral axis and FGF/MEK/ERK signals patterning along the anterior-posterior axis of the neural plate. The Ciona Gsx gene is specifically expressed in the a9.33 cells in the row III/column 2 position of anterior brain lineages, characterised by a combinatorial input of Nodal-OFF, Notch-ON and FGF-ON. Here, we identify the minimal cis-regulatory element (CRE) of 376 bp, which can recapitulate the early activation of Gsx. We show that this minimal CRE responds in the same way as the endogenous Gsx gene to manipulation of FGF- and Notch-signalling pathways and to overexpression of Snail, a mediator of Nodal signals, and Six3/6, which is required to demarcate the anterior boundary of Gsx expression at the late neurula stage. We reveal that sequences proximal to the transcription start site include a temporal regulatory element required for the precise transcriptional onset of gene expression. We conclude that sufficient spatial and temporal information for Gsx expression is integrated in 376 bp of non-coding cis-regulatory sequences.


Asunto(s)
Ciona/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Placa Neural/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Proteínas de Homeodominio/metabolismo , Receptores Notch/metabolismo , Elementos de Respuesta/genética , Eliminación de Secuencia , Transducción de Señal/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Tiempo
13.
Cell Rep ; 23(6): 1840-1852, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29742438

RESUMEN

Type II cadherins are cell-cell adhesion proteins critical for tissue patterning and neuronal targeting but whose molecular binding code remains poorly understood. Here, we delineate binding preferences for type II cadherin cell-adhesive regions, revealing extensive heterophilic interactions between specific pairs, in addition to homophilic interactions. Three distinct specificity groups emerge from our analysis with members that share highly similar heterophilic binding patterns and favor binding to one another. Structures of adhesive fragments from each specificity group confirm near-identical dimer topology conserved throughout the family, allowing interface residues whose conservation corresponds to specificity preferences to be identified. We show that targeted mutation of these residues converts binding preferences between specificity groups in biophysical and co-culture assays. Our results provide a detailed understanding of the type II cadherin interaction map and a basis for defining their role in tissue patterning and for the emerging importance of their heterophilic interactions in neural connectivity.


Asunto(s)
Cadherinas/metabolismo , Secuencia de Aminoácidos , Animales , Cadherinas/química , Adhesión Celular , Línea Celular , Secuencia Conservada , Análisis Mutacional de ADN , Humanos , Ratones , Mutación/genética , Filogenia , Unión Proteica , Multimerización de Proteína
14.
ACS Biomater Sci Eng ; 4(12): 4354-4366, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31572767

RESUMEN

A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.

15.
Tissue Eng Part A ; 24(7-8): 546-558, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28726548

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/fisiología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Wnt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Diferenciación Celular/genética , Células Cultivadas , Citocalasina D/farmacología , Humanos , Fosfoproteínas/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción , Proteínas Wnt/genética , Proteínas Señalizadoras YAP
16.
Dev Dyn ; 247(1): 170-184, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28891097

RESUMEN

BACKGROUND: Vertebrate spinal cord development requires Sonic Hedgehog (Shh) signaling from the floorplate and notochord, where it is thought to act in concentration dependent manner to pattern distinct cell identities along the ventral-to-dorsal axis. While in vitro experiments demonstrate naïve neural tissues are sensitive to small changes in Shh levels, genetic studies illustrate that some degree of ventral patterning can occur despite significant perturbations in Shh signaling. Consequently, the mechanistic relationship between Shh morphogen levels and acquisition of distinct cell identities remains unclear. RESULTS: We addressed this using Hedgehog acetyltransferase (HhatCreface ) and Wiggable mouse mutants. Hhat encodes a palmitoylase required for the secretion of Hedgehog proteins and formation of the Shh gradient. In its absence, the spinal cord develops without floorplate cells and V3 interneurons. Wiggable is an allele of the Shh receptor Patched1 (Ptch1Wig ) that is unable to inhibit Shh signal transduction, resulting in expanded ventral progenitor domains. Surprisingly, HhatCreface/Creface ; Ptch1Wig/Wig double mutants displayed fully restored ventral patterning despite an absence of Shh secretion from the floorplate. CONCLUSIONS: The full range of neuronal progenitor types can be generated in the absence of a Shh gradient provided pathway repression is dampened, illustrating the complexity of morphogen dynamics in vertebrate patterning. Developmental Dynamics 247:170-184, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas Hedgehog/metabolismo , Tubo Neural/embriología , Transducción de Señal/fisiología , Médula Espinal/embriología , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Ratones Transgénicos , Tubo Neural/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Médula Espinal/metabolismo
17.
Dev Biol ; 432(1): 72-85, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28412462

RESUMEN

Sonic Hedgehog (Shh) signaling regulates the patterning of ventral spinal cord through the effector Gli family of transcription factors. Previous in vitro studies showed that an E3 ubiquitin ligase containing Speckle-type POZ protein (Spop) targets Gli2 and Gli3 for ubiquitination and degradation, but the role of Spop in Shh signaling and mammalian spinal cord patterning remains unknown. Here, we show that loss of Spop does not alter spinal cord patterning, but it suppresses the loss of floor plate and V3 interneuron phenotype of Gli2 mutants, suggesting a negative role of Spop in Gli3 activator activity, Shh signaling and the specification of ventral cell fates in the spinal cord. This correlates with a moderate but significant increase in the level of Gli3 protein in the Spop mutant spinal cords. Furthermore, loss of Spop restores the maximal Shh pathway activation and ventral cell fate specification in the Gli1;Sufu double mutant spinal cord. Finally, we show that loss of Spop-like does not change the spinal cord patterning in either wild type or Spop mutants, suggesting that it does not compensate for the loss of Spop in Shh signaling and spinal cord patterning. Therefore, our results demonstrate a negative role of Spop in the level and activity of Gli3, Shh signaling and ventral spinal cord patterning.


Asunto(s)
Proteínas Hedgehog/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/embriología , Proteína Gli3 con Dedos de Zinc/metabolismo , Animales , Tipificación del Cuerpo/fisiología , Diferenciación Celular/fisiología , Interneuronas/citología , Interneuronas/metabolismo , Ratones , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas Nucleares/deficiencia , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Transducción de Señal , Médula Espinal/metabolismo , Transactivadores/metabolismo , Complejos de Ubiquitina-Proteína Ligasa , Proteína Gli2 con Dedos de Zinc/genética
18.
Dev Biol ; 425(1): 33-43, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28322736

RESUMEN

The embryonic precursor of the vertebrate central nervous system, the neural plate, is patterned along the anterior-posterior axis and shaped by morphogenetic movements early in development. We previously identified the genes sall1 and sall4, known regulators of pluripotency in other contexts, as transcriptional targets of developmental signaling pathways that regulate neural development. Here, we demonstrate that these two genes are required for induction of posterior neural fates, the cell shape changes that contribute to neural tube closure, and later neurogenesis. Upon sall1 or sall4 knockdown, defects are associated with the failure of the neural plate to differentiate. Consistent with this, sall-deficient neural tissue exhibits an aberrant upregulation of pou5f3 family genes, the Xenopus homologs of the mammalian stem cell maintenance factor Pou5f1 (Oct4). Furthermore, overexpression of pou5f3 genes in Xenopus causes defects in neural patterning, morphogenesis, and differentiation that phenocopy those observed in sall1 and sall4 morphants. In all, this work shows that both sall1 and sall4 act to repress pou5f3 family gene expression in the neural plate, thereby allowing vertebrate neural development to proceed.


Asunto(s)
Placa Neural/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Animales , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Microscopía Confocal , Morfogénesis/genética , Placa Neural/embriología , Neurulación/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis/embriología
19.
Dev Biol ; 421(2): 183-193, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913219

RESUMEN

During early embryogenesis, FGF signals regulate the antero-posterior (AP) patterning of the neural plate by promoting posterior cell fates. In particular, BMP signal-mediated attenuation of FGF pathway plays a critical role in the determination of the anterior neural region. Here we show that Tbx2, a T-box transcriptional repressor regulates anterior neural specification by suppressing FGF8 signaling pathway in Xenopus embryo. Tbx2 is expressed in the anterior edge of the neural plate in early neurulae. Overexpression and knockdown of Tbx2 induce expansion and reduction in the expression of anterior neural markers, respectively. It also suppresses FGF8-induced ERK phosphorylation and neural caudalization. Tbx2, which is a target gene of BMP signal, down-regulates FGF8 signaling by inhibiting the expression of Flrt3, a positive regulator of this pathway. We found that Tbx2 binds directly to the T-box element located in the promoter region of Flrt3 gene, thereby interfering with the activity of the promoter. Consistently, Tbx2 augmentation of anterior neural formation is inhibited by co-expression of Flrt3. Furthermore, disruption of the anterior-most structures such as eyes in Tbx2-depleted embryos can be rescued by inhibition of Flrt3 function or FGF signaling. Taken together, our results suggest that Tbx2 mediates BMP signal to down-regulate FGF signaling pathway by repressing Flrt3 expression for anterior tissue formation.


Asunto(s)
Tipificación del Cuerpo/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Transducción de Señal , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Cabeza/embriología , Hibridación in Situ , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Regiones Promotoras Genéticas/genética , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética
20.
Development ; 144(2): 258-264, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993985

RESUMEN

In terms of their embryonic origins, the anterior and posterior parts of the ascidian central nervous system (CNS) are associated with distinct germ layers. The anterior part of the sensory vesicle, or brain, originates from ectoderm lineages following a neuro-epidermal binary fate decision. In contrast, a large part of the remaining posterior CNS is generated following neuro-mesodermal binary fate decisions. Here, we address the mechanisms that pattern the anterior brain precursors along the medial-lateral axis (future ventral-dorsal) at neural plate stages. Our functional studies show that Nodal signals are required for induction of lateral genes, including Delta-like, Snail, Msxb and Trp Delta-like/Notch signalling induces intermediate (Gsx) over medial (Meis) gene expression in intermediate cells, whereas the combinatorial action of Snail and Msxb prevents the expression of Gsx in lateral cells. We conclude that despite the distinct embryonic lineage origins within the larval CNS, the mechanisms that pattern neural precursors are remarkably similar.


Asunto(s)
Tipificación del Cuerpo/fisiología , Encéfalo/embriología , Ciona intestinalis/embriología , Células-Madre Neurales/fisiología , Urocordados/embriología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Inducción Embrionaria/fisiología , Placa Neural/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA