Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Healthc Technol Lett ; 6(6): 275-279, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32038871

RESUMEN

Surgical instrument detection in robot-assisted surgery videos is an import vision component for these systems. Most of the current deep learning methods focus on single-tool detection and suffer from low detection speed. To address this, the authors propose a novel frame-by-frame detection method using a cascading convolutional neural network (CNN) which consists of two different CNNs for real-time multi-tool detection. An hourglass network and a modified visual geometry group (VGG) network are applied to jointly predict the localisation. The former CNN outputs detection heatmaps representing the location of tool tip areas, and the latter performs bounding-box regression for tool tip areas on these heatmaps stacked with input RGB image frames. The authors' method is tested on the publicly available EndoVis Challenge dataset and the ATLAS Dione dataset. The experimental results show that their method achieves better performance than mainstream detection methods in terms of detection accuracy and speed.

2.
PeerJ ; 6: e4551, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29607263

RESUMEN

Prolonged life expectancy in humans has been accompanied by an increase in the prevalence of cancers. Breast cancer (BC) is the leading cause of cancer-related deaths. It accounts for one-fourth of all diagnosed cancers and affects one in eight females worldwide. Given the high BC prevalence, there is a practical need for demographic screening of the disease. In the present study, we re-analyzed a large microRNA (miRNA) expression dataset (GSE73002), with the goal of optimizing miRNA biomarker selection using neural network cascade (NNC) modeling. Our results identified numerous candidate miRNA biomarkers that are technically suitable for BC detection. We combined three miRNAs (miR-1246, miR-6756-5p, and miR-8073) into a single panel to generate an NNC model, which successfully detected BC with 97.1% accuracy in an independent validation cohort comprising 429 BC patients and 895 healthy controls. In contrast, at least seven miRNAs were merged in a multiple linear regression model to obtain equivalent diagnostic performance (96.4% accuracy in the independent validation set). Our findings suggested that suitable modeling can effectively reduce the number of miRNAs required in a biomarker panel without compromising prediction accuracy, thereby increasing the technical possibility of early detection of BC.

3.
J Sep Sci ; 39(5): 864-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26718117

RESUMEN

Despite the recent introduction of mass detection techniques, ultraviolet detection is still widely applied in the field of the chromatographic analysis of natural medicines. Here, a neural network cascade model consisting of nine small artificial neural network units was innovatively developed to predict the chromatographic sequence of natural compounds by integrating five molecular descriptors as the input. A total of 117 compounds of known structure were collected for model building. The order of appearance of each compound was determined in gradient chromatography. Strong linear correlation was found between the predicted and actual chromatographic position orders (Spearman's rho = 0.883, p < 0.0001). Application of the model to the external validation set of nine natural compounds was shown to dramatically increase the prediction accuracy of the real chromatographic order of multiple compounds. A case study shows that chromatographic sequence prediction based on a neural network cascade facilitated compound identification in the chromatographic fingerprint of Radix Salvia miltiorrhiza. For natural medicines of known compound composition, our method provides a feasible means for identifying the constituents of interest when only ultraviolet detection is available.


Asunto(s)
Medicamentos Herbarios Chinos/química , Redes Neurales de la Computación , Salvia miltiorrhiza/química , Cromatografía Líquida de Alta Presión
4.
PeerJ ; 3: e1524, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719820

RESUMEN

Substantial evidence has shown that most exogenous substances are metabolized by multiple cytochrome P450 (P450) enzymes instead of by merely one P450 isoform. Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific P450 inhibition. Herein, we innovatively established an artificial neural network cascade (NNC) model composed of 23 cascaded networks in a ladder-like framework to identify potential multi-P450 inhibitors among natural compounds by integrating 12 molecular descriptors into a P450 inhibition score (PIS). Experimental data reporting in vitro inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) were obtained for 8,148 compounds from the Cytochrome P450 Inhibitors Database (CPID). The results indicate significant positive correlation between the PIS values and the number of inhibited P450 isoforms (Spearman's ρ = 0.684, p < 0.0001). Thus, a higher PIS indicates a greater possibility for a chemical to inhibit the enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of the NNC model suggested an accuracy of 78.7% for identifying whether a compound is a multi-P450 inhibitor or not. Using our NNC model, 22.2% of the approximately 160,000 natural compounds in TCM Database@Taiwan were identified as potential multi-P450 inhibitors. Furthermore, chemical similarity calculations suggested that the prevailing parent structures of natural multi-P450 inhibitors were alkaloids. Our findings show that dissection of chemical structure contributes to confident identification of natural multi-P450 inhibitors and provides a feasible method for virtually evaluating multi-P450 inhibition risk for a known structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA