Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Med Imaging Graph ; 110: 102314, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37988845

RESUMEN

In this paper, we address the problem of estimating remaining surgery duration (RSD) from surgical video frames. We propose a Bayesian long short-term memory (LSTM) network-based Deep Negative Correlation Learning approach called BD-Net for accurate regression of RSD prediction as well as estimation of prediction uncertainty. Our method aims to extract discriminative visual features from surgical video frames and model the temporal dependencies among frames to improve the RSD prediction accuracy. To this end, we propose to train an ensemble of Bayesian LSTMs on top of a backbone network by the way of deep negative correlation learning (DNCL). More specifically, we deeply learn a pool of decorrelated Bayesian regressors with sound generalization capabilities through managing their intrinsic diversities. BD-Net is simple and efficient. After training, it can produce both RSD prediction and uncertainty estimation in a single inference run. We demonstrate the efficacy of BD-Net on publicly available datasets of two different types of surgeries: one containing 101 cataract microscopic surgeries with short durations and the other containing 80 cholecystectomy laparoscopic surgeries with relatively longer durations. Experimental results on both datasets demonstrate that the proposed BD-Net achieves better results than the state-of-the-art (SOTA) methods. A reference implementation of our method can be found at: https://github.com/jywu511/BD-Net.


Asunto(s)
Aprendizaje , Teorema de Bayes , Incertidumbre
2.
J Biomed Inform ; 141: 104355, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37023842

RESUMEN

In recent years, the high-resolution manometry (HRM) technique has been increasingly used to study esophageal and colonic pressurization and has become a standard routine for discovering mobility disorders. In addition to evolving guidelines for the interpretation of HRM like Chicago standard, some complexities, such as the dependency of normative reference values on the recording device and other external variables, still remain for medical professions. In this study, a decision support framework is developed to aid the diagnosis of esophageal mobility disorders based on HRM data. To abstract HRM data, Spearman correlation is employed to model the spatio-temporal dependencies of pressure values of HRM components and convolutional graph neural networks are then utilized to embed relation graphs to the features vector. In the decision-making stage, a novel Expert per Class Fuzzy Classifier (EPC-FC) is presented that employs the ensemble structure and contains expertized sub-classifiers for recognizing a specific disorder. Training sub-classifiers using the negative correlation learning method makes the EPC-FC highly generalizable. Meanwhile, separating the sub-classifiers of each class gives flexibility and interpretability to the structure. The suggested framework is evaluated on a dataset of 67 patients in 5 different classes recorded in Shariati Hospital. The average accuracy of 78.03% for a single swallow and 92.54% for subject-level is achieved for distinguishing mobility disorders. Moreover, compared with the other studies, the presented framework has an outstanding performance considering that it imposes no limits on the type of classes or HRM data. On the other hand, the EPC-FC outperforms other comparative classifiers such as SVM and AdaBoost not only in HRM diagnosis but also on other benchmark classification problems.


Asunto(s)
Trastornos de la Motilidad Esofágica , Humanos , Trastornos de la Motilidad Esofágica/diagnóstico , Manometría/métodos , Benchmarking , Colon
3.
Sensors (Basel) ; 21(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34960564

RESUMEN

Nowadays, soft sensor techniques have become promising solutions for enabling real-time estimation of difficult-to-measure quality variables in industrial processes. However, labeled data are often scarce in many real-world applications, which poses a significant challenge when building accurate soft sensor models. Therefore, this paper proposes a novel semi-supervised soft sensor method, referred to as ensemble semi-supervised negative correlation learning extreme learning machine (EnSSNCLELM), for industrial processes with limited labeled data. First, an improved supervised regression algorithm called NCLELM is developed, by integrating the philosophy of negative correlation learning into extreme learning machine (ELM). Then, with NCLELM as the base learning technique, a multi-learner pseudo-labeling optimization approach is proposed, by converting the estimation of pseudo labels as an explicit optimization problem, in order to obtain high-confidence pseudo-labeled data. Furthermore, a set of diverse semi-supervised NCLELM models (SSNCLELM) are developed from different enlarged labeled sets, which are obtained by combining the labeled and pseudo-labeled training data. Finally, those SSNCLELM models whose prediction accuracies were not worse than their supervised counterparts were combined using a stacking strategy. The proposed method can not only exploit both labeled and unlabeled data, but also combine the merits of semi-supervised and ensemble learning paradigms, thereby providing superior predictions over traditional supervised and semi-supervised soft sensor methods. The effectiveness and superiority of the proposed method were demonstrated through two chemical applications.


Asunto(s)
Algoritmos , Aprendizaje
4.
Math Biosci Eng ; 16(5): 3311-3330, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-31499615

RESUMEN

With the development of the smart manufacturing, data-driven fault diagnosis has receiving more and more attentions from both academic and engineering fields. As one of the most important data-driven fault diagnosis method, deep learning (DL) has achieved remarkable applications. However, the DL based fault diagnosis methods still have the following two drawbacks: 1) One of the most major branch of deep learning is to construct the deeper structures, however the deep learning models in fault diagnosis is very shadow. 2) As stated by the no-free-lunch theorem, no single model can perform best on every dataset, and the individual deep learning model still suffers from the generalization ability. In this research, a new negative correlation ensemble transfer learning method (NCTE) is proposed. Firstly, the transfer learning based ResNet-50 is proposed to construct a deep learning structure that has 50 layers. Secondly, several fully-connected layers and softmax classifiers are trained cooperatively using negative correlation learning (NCL). Thirdly, the hyper-parameters of the proposed NCTE are determined by cross validation. The proposed NCTE is conducted on the KAT Bearing Dataset, and the prediction accuracy of NCTE is as high as 98.73%. This results show that NCTE has achieved a good results compared with other machine learning and deep learning method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA