Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 20(8): e202300873, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37440297

RESUMEN

Cyclodextrins and their derivatives have shown successful applications in extracting active compounds from medicinal plants. However, the use of ß-cyclodextrin derivatives for extracting apigenin and luteolin from Chrysanthemum indicum L. remains unexplored. Additionally, the application of nature-inspired optimization algorithms in optimizing extraction conditions has been limited. Therefore, this study was performed with the aims of optimizing the extraction of apigenin and luteolin from C. indicum with the assistance of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) using response surface methodology combined with various optimization algorithms, including desirability function approach, genetic algorithm, particle swarm optimization, and firefly algorithm. The results showed that the optimal conditions obtained by the four algorithms were consistent, with an extraction time of 60 min, HP-ß-CD concentration of 30 mg/mL, and a solvent-to-solid ratio of 24 mg/mL. At these conditions, the apigenin and luteolin contents were 1.362±0.008 and 8.724±0.117 mg/g, respectively. The results also showed that HP-ß-CD-assisted extraction exhibited significantly higher apigenin and luteolin contents compared to conventional solvent. Comparable results were also yielded from the antioxidant assay. Our study suggested that the nature-inspired optimization algorithms might be potential options in enhancing the effectiveness of the traditional response surface methodology for the optimization of extraction of natural products.


Asunto(s)
Chrysanthemum , beta-Ciclodextrinas , Apigenina , Luteolina/farmacología , Antioxidantes/farmacología , 2-Hidroxipropil-beta-Ciclodextrina , Solventes , Extractos Vegetales
2.
Arch Comput Methods Eng ; 30(4): 2543-2578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36624874

RESUMEN

The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimization algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm (AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimization Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis entropy rather than with t-entropy in both color standard images and medical pathology images.

3.
Neural Comput Appl ; 35(10): 7635-7658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36532880

RESUMEN

This paper presents a population-based evolutionary computation model for solving continuous constrained nonlinear optimization problems. The primary goal is achieving better solutions in a specific problem type, regardless of metaphors and similarities. The proposed algorithm assumes that candidate solutions interact with each other to have better fitness values. The interaction between candidate solutions is limited with the closest neighbors by considering the Euclidean distance. Furthermore, Tabu Search Algorithm and Elitism selection approach inspire the memory usage of the proposed algorithm. Besides, this algorithm is structured on the principle of the multiplicative penalty approach that considers satisfaction rates, the total deviations of constraints, and the objective function value to handle continuous constrained problems very well. The performance of the algorithm is evaluated with real-world engineering design optimization benchmark problems that belong to the most used cases by evolutionary optimization researchers. Experimental results show that the proposed algorithm produces satisfactory results compared to the other algorithms published in the literature. The primary purpose of this study is to provide an algorithm that reaches the best-known solution values rather than duplicating existing algorithms through a new metaphor. We constructed the proposed algorithm with the best combination of features to achieve better solutions. Different from similar algorithms, constrained engineering problems are handled in this study. Thus, it aims to prove that the proposed algorithm gives better results than similar algorithms and other algorithms developed in the literature.

4.
Evol Syst (Berl) ; 13(6): 889-945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37520044

RESUMEN

Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA