Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Data Brief ; 54: 110554, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882191

RESUMEN

To advance high-energy atmospheric physics, studying atmospheric electric fields (AEF) and cosmic ray fluxes as an interconnected system is crucial. At Mt. Argats, simultaneous measurements of particle fluxes, electric fields, weather conditions, and lightning locations have significantly enhanced the validation of models that describe the charge structures of thunderclouds and the mechanics of internal electron accelerators. In 2023, observations of the five largest thunderstorm ground enhancements (TGEs) revealed electric fields exceeding 2.0 kV/cm at elevations just tens of meters above ground-potentially hazardous to rockets and aircraft during launch and charging operations. Utilizing simple yet effective monitoring equipment developed at Aragats, we can mitigate the risks posed by these high-intensity fields. The Mendeley dataset, comprising various measured parameters during thunderstorm activities, enables researchers to perform advanced correlation analysis and uncover complex relationships between these atmospheric phenomena. This study underscores the critical importance of integrated atmospheric studies for ensuring the safety of high-altitude operations and advancing atmospheric science.

2.
Geohealth ; 8(6): e2024GH001067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884068

RESUMEN

Tourist volcanic caves are in high demand for ecotourism and geotourism lovers, as well as by sun and beach tourists as a complementary activity during their holidays. There are six tourist volcanic caves in the Canary Islands, all of them managed by the local administration of the island. The managers of these caves must ensure the safety of visitors and workers, who are exposed to natural hazards, such as radon, inherent to the environment in which the activity takes place. The methodology for analyzing natural radon radiation is based on the latest studies published by experts in this field and on previous experiences in tourist caves. This article proposes a protocol for the correct management of radon in tourist caves in the Canary Islands, adapted to current regulations, to mitigate effects on the health of visitors and workers.

3.
Microbiol Res ; 277: 127511, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852679

RESUMEN

Castañar Cave (Caceres, Spain) is a unique show cave known for its high natural radiation levels. This study presents a comprehensive analysis of its prokaryotic diversity, specifically focusing on investigating the influence of environmental conditions and substrate characteristics on the prokaryotic community structure in the cave sediments. Additionally, the research aims to evaluate the potential impact of human activities on the cave ecosystem. The identification of distinct bioclimatic zones within the cave was made possible through a combination of environmental and microbial monitoring (ATP assays). The results reveal sediment texture as a significant factor, notably affecting the structure, diversity, and phylogenetic variability of the microbial community, including both Bacteria and Archaea. The proportion of clay minerals in sediments plays a crucial role in regulating moisture levels and nutrient availability. These substrate properties collectively exert a significant selective pressure on the structure of prokaryotic communities within cave sediments. The molecular approach shows that heterotrophic bacteria, including those with chitinolytic enzymes, primarily inhabit the cave. Furthermore, chemoautotrophic nitrifiers such as the archaea Nitrososphaeria and the genus Nitrospira, as well as methanotrophic bacteria from the phyla Methylomirabilota, Pseudomonadota, and Verrucomicrobiota, are also present. Remarkably, despite being a show cave, the cave microbiota displays minimal impacts from human activities and the surface ecosystem. Prokaryotic populations exhibit stability in the innermost areas, while the tourist trail area experiences slightly higher biomass increases due to visitor traffic. This suggests that conservation efforts have successfully limited the entry of external nutrients into the innermost cave areas. Additionally, the results suggest that integrating biomarkers like ATP into environmental monitoring can significantly enhance the methods used to study the negative impacts of tourism on cave ecosystems.


Asunto(s)
Microbiota , Radón , Humanos , Ecosistema , España , Filogenia , Bacterias/genética , Archaea/genética , Adenosina Trifosfato
4.
Artículo en Inglés | MEDLINE | ID: mdl-37491111

RESUMEN

Radon gas inhalation is the main source of exposure to ionizing radiation by humans. There is still lack in knowledge concerning the chronic and indirect effects of exposure to this carcinogenic factor. Therefore, the aim of this work is to analyze the levels of oxidative genomic damage in inhabitants of a medium-high background radiation area (HBRA) (N = 82) in Northeastern Brazil and compare them with people living in a low background radiation area (LBRA) (N = 46). 8-hydroxy-2-deoxyguanosine (8-OHdG) was quantified in urine, Ser326Cys polymorphism was determined in the hOGG1 gene and indoor radon was measured. HBRA houses had 6.5 times higher indoor radon levels than those from LBRA (p-value < 0.001). The 8-OHdG mean (95% confidence interval) were significantly different, 8.42 (5.98-11.9) ng/mg creatinine and 29.91 (23.37-38.30) ng/mg creatinine for LBRA and HBRA, respectively. The variables representing lifestyle and environmental and occupational exposures did not have a significant association with oxidized guanosine concentrations. On the other hand, lower 8-OHdG values were observed in subjects that had one mutant allele (326Cys) in the hOGG1 gene than those who had both wild alleles (Ser/Ser (p-value < 0.05). It can be concluded that high radon levels have significantly influenced the genome oxidative metabolism and hOGG1 gene polymorphism would mediate the observed biological response.


Asunto(s)
Radón , Humanos , Radón/toxicidad , Brasil , Creatinina , Desoxiguanosina , 8-Hidroxi-2'-Desoxicoguanosina , Estrés Oxidativo , Genómica
5.
Genes Environ ; 45(1): 16, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127760

RESUMEN

BACKGROUND: The human population living in high level natural radiation areas (HLNRAs) of Kerala coast provide unique opportunities to study the biological effects of low dose and low dose rate ionizing radiation below 100 mGy. The level of radiation in this area varies from < 1.0 to 45 mGy/year. The areas with ≤ 1.50 mGy/year are considered as normal level natural radiation areas (NLNRA) and > 1.50 mGy/year, as high level natural radiation areas (HLNRA). The present study evaluated dose response relationship between DNA double strand breaks (DSBs) and background radiation dose in individuals residing in Kerala coast. Venous blood samples were collected from 200 individuals belonging to NLNRA (n = 50) and four dose groups of HLNRA; 1.51-5.0 mGy/year (n = 50), 5.01-10.0 mGy/year (n = 30), 10.01-15.0 mGy/year (n = 33), > 15.0 mGy/year (n = 37) with written informed consent. The mean dose of NLNRA and four HLNRA dose groups studied are 1.21 ± 0.21 (range: 0.57-1.49), 3.02 ± 0.95 (range: 1.57-4.93), 7.43 ± 1.48 (range: 5.01-9.75), 12.22 ± 1.47 (range: 10.21-14.99), 21.64 ± 6.28 (range: 15.26-39.88) mGy/year, respectively. DNA DSBs were quantified using γH2AX as a marker, where foci were counted per cell using fluorescence microscopy. RESULTS: Our results revealed that the frequency of γH2AX foci per cell was 0.090 ± 0.051 and 0.096 ± 0.051, respectively in NLNRA and HLNRA individuals, which were not significantly different (t198 = 0.33; P = 0.739). The frequency of γH2AX foci was observed to be 0.090 ± 0.051, 0.096 ± 0.051, 0.076 ± 0.036, 0.087 ± 0.042, 0.108 ± 0.046 per cell, respectively in different dose groups of ≤ 1.50, 1.51-5.0, 5.01-10.0, 10.01-15.0, > 15.0mGy/year (ANOVA, F4,195 = 2.18, P = 0.072) and suggested non-linearity in dose response. The frequency of γH2AX foci was observed to be 0.098 ± 0.042, 0.078 ± 0.037, 0.084 ± 0.042, 0.099 ± 0.058, 0.097 ± 0.06 and 0.114 ± 0.033 per cell in the age groups of ≤ 29, 30-34, 35-39, 40-44, 45-49 and ≥ 50 years, respectively (ANOVA, F5,194 = 2.17, P = 0.059), which suggested marginal influence of age on the baseline of DSBs. Personal habits such as smoking (No v/s Yes: 0.092 ± 0.047 v/s 0.093 ± 0.048, t198 = 0.13; P = 0.895) and drinking alcohol (No v/s Yes: 0.096 ± 0.052 v/s 0.091 ± 0.045, t198 = 0.62; P = 0.538) did not show any influence on DSBs in the population. CONCLUSION: The present study did not show any increase in DSBs in different dose groups of HLNRA compared to NLNRA, however, it suggested a non-linear dose response between DNA DSBs and chronic low dose radiation.

6.
Sci Total Environ ; 890: 164304, 2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37230348

RESUMEN

Polar regions are the most exposed to secondary particles and radiation produced by primary cosmic rays in the atmosphere, because naturally they are with marginal geomagnetic shielding. In addition, the secondary particle flux contributing to the complex radiation field is enhanced at high-mountain altitudes compared to sea level because of the reduced atmospheric attenuation. At present, there are very few systematic experimental measurements of environmental dose at high southern latitudes, specifically at high-altitude region. Here, we report a campaign of measurements with different devices, that is passive and Liulin-type dosimeters, of the radiation background at high-mountain Antarctic station Vostok (3488 m above sea level, 78° 27' S; 106° 50' E). We compare the measurements with a Monte Carlo-based model for the propagation of the cosmic rays through the atmosphere and assessment of the radiation field in the atmosphere. We employed the model to estimate the radiation dose at Vostok station during the ground-level enhancement at 28 October 2021. As in previous studies by other teams, we show that the annual dose equivalent at high-altitude Antarctic facilities can significantly exceed the limit of 1 mSv established for the general population by the ICRP.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Humanos , Altitud , Regiones Antárticas , Atmósfera , Dosis de Radiación , Aeronaves
7.
Appl Radiat Isot ; 192: 110596, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36549179

RESUMEN

Radioactive material inspection in public is important to nuclear safety, and it is also the key security for holding large-scale events, while fast and efficient means of detecting radioactive materials are an important technical guarantee for nuclear safety. In this paper, energy and time distribution characteristics information of the natural background and target nuclide gamma particles are used to improve the sequential background comparison method. By using those energy and time distribution characteristics information, with the half-life and characteristic gamma-ray energy and branching ratio information of the nuclide, the response time and the identification accuracy of extremely low radioactive nuclides detected under natural-radiation background can be improved. Based on the theoretical research, the particle event acquisition device with the LaBr3(Ce) detector was used to carry out the experimental verification, and the results show that, this method can identify 137Cs (characteristic energy of 0.662 MeV,8700 Bq,the position relative to the detector is 30 cm) in 6.2 s, and identify 60Co (characteristic energy of 1.173 MeV and 1.332 MeV, 4500 Bq, the position relative to the detector is 15 cm) in 5.9 s. Experiments prove that the improved background comparison-based sequential Bayesian method can identify low radioactivity radionuclides under natural-radiation background rapidly.


Asunto(s)
Monitoreo de Radiación , Radiactividad , Contaminantes Radiactivos del Suelo , Teorema de Bayes , Contaminantes Radiactivos del Suelo/análisis , Semivida , Radiación de Fondo
8.
Ecotoxicol Environ Saf ; 246: 114156, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36209527

RESUMEN

Understanding the response of soil microbial community to abnormal natural radionuclides is important to maintain soil ecological function, but the underlying mechanism of tolerance and survival of microbes is poorly studied. The effects of natural radionuclides on the topsoil microbial communities in anomalous natural radiation area were investigated in this work, and it was found that microbial community composition was significantly influenced by the specific-activities of natural radionuclides. The results revealed that relative abundances of 10 major microbial phyla and genera displayed different patterns along specific-activity gradients, including decreasing, increasing, hump-shaped, U-shaped, and similar sinusoidal or cosine wave trends, which indicated that the natural radionuclides were the predominant driver for change of microbial community structure. At the phylum and genus level, microbial communities were divided into two special groups according to the tolerance to natural radionuclides, such as 238U and 232Th, including tolerant and sensitive groups. Taken together, our findings suggest that the high specific-activities of natural radionuclides can obviously drive changes in microbial communities, providing a possibility for future studies on the microbial tolerance genes and bioremediation strains.


Asunto(s)
Microbiota , Suelo , Suelo/química , Microbiología del Suelo , Bacterias , Radioisótopos
9.
Materials (Basel) ; 15(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36234216

RESUMEN

The paper investigates a possible hazard originating from natural radionuclides in building materials in a selected historical building being reconstructed for housing. Both outdoor and indoor risks were evaluated through the radiological indices and estimated doses, based on measured activities of natural radionuclides in stone and brick materials of the building. The average measured activity concentrations of radionuclides were 7.32 Bq/kg for 226Ra, 40.05 Bq/kg for 232Th, and 546.64 Bq/kg for 40K radionuclides. The average total activity concentration in building materials (594.0 Bq/kg) exceeded the world average value. A correlation was found between the potassium content in the building material samples and the total activity of radionuclides. The gamma indices, Iγ, calculated for the samples, ranged in an interval of 0.26-0.60, not exceeding the restricted limit for bulk materials Iγ = 1. The average annual effective dose due to building materials was 0.53 mSv/y, which does not exceed the limit (1 mSv/y), however, it contributes to a gamma dose excess that is higher than recommended (0.3 mSv/y at the most). The bricks were responsible for a higher level of natural radiation than natural stone material. Nevertheless, based on the radiation protection requirements, it can be concluded that the building can be used for residential purposes after the reconstruction, as no significant human health impact is expected due to the radioactivity of building materials.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35805783

RESUMEN

The specific activity of U-238 and Th-232, as well as K-40 radionuclides, in twenty-nine investigated medicinal herbs used in Egypt has been measured using a high-purity germanium (HP Ge) detector. The measured values ranged from the BDL to 20.71 ± 1.52 with a mean of 7.25 ± 0.54 (Bq kg-1) for uranium-238, from the BDL to 29.35 ± 1.33 with a mean of 7.78 ± 0.633 (Bq kg-1) for thorium-232, and from 172 ± 5.85 to 1181.2 ± 25.5 with a mean of 471.4 ± 11.33 (Bq kg-1) for potassium-40. Individual herbs with the highest activity levels were found to be 20.71 ± 1.52 (Bq kg-1) for uranium-238 (H4, Thyme herb), 29.35 ± 1.33 (Bq kg-1) for thorium-232 (H20, Cinnamon), and 1181.2 ± 25.5 (Bq kg-1) for potassium-40 (H24, Worm-wood). (AACED) Ingestion-related effective doses over the course of a year of uranium-238 and thorium-232, as well as potassium-40 estimated from measured activity concentrations, are 0.002304 ± 0.00009 (minimum), 0.50869 ± 0.0002 (maximum), and 0.0373 ± 0.0004 (average)(mSv/yr). Radium equivalent activity (Raeq), annual gonadal dose equivalent (AGDE), absorbed gamma dose rate (Doutdoor, Dindoor), gamma representative level index (I), annual effective dose (AEDtotal), external and internal hazard index (Hex, Hin), and excess lifetime cancer risk were determined in medicinal plants (ELCR). The radiological hazards assessment revealed that the investigated plant species have natural radioactivity levels that are well within the internationally recommended limit. This is the first time that the natural radioactivity of therapeutic plants has been measured in Egypt. In addition, no artificial radionuclide (for example, 137Cs) was discovered in any of the samples. Therefore, the current findings are intended to serve as the foundation for establishing a standard safety and guideline for using these therapeutic plants in Egypt.


Asunto(s)
Plantas Medicinales , Monitoreo de Radiación , Radiactividad , Radio (Elemento) , Contaminantes Radiactivos del Suelo , Uranio , Radiación de Fondo , Radioisótopos de Cesio , Radioisótopos de Potasio/análisis , Radio (Elemento)/análisis , Contaminantes Radiactivos del Suelo/análisis , Torio/análisis , Uranio/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-35649671

RESUMEN

There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.


Asunto(s)
Radiación de Fondo , Protección Radiológica , Relación Dosis-Respuesta en la Radiación , Humanos , Modelos Lineales , Medición de Riesgo
12.
Toxics ; 10(1)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35051081

RESUMEN

Mamuju, Indonesia, is an area with high natural background radiation. This study assesses heavy metal content in soil samples from this area to determine the level of public and environmental hazard it presents. This study analyzes natural radionuclide elements using high purity germanium (HPGe) gamma spectrometry and performs heavy metals analysis using a flame atomic absorption spectrometry (FAAS). Moreover, pollution indices and descriptive analyses were used to assess heavy metal contamination in the environment and the correlation between heavy metals and radionuclides. The results demonstrate that soil samples in several areas of Mamuju contain a high concentration of the natural radionuclides 226Ra and 232Th, and that heavy metal concentrations in the soil decrease in the sequence Zn > Pb > Cr > Cu > Ni > Cd. This study revealed that soil samples from Mamuju are moderately contaminated. There was a strong positive relationship between 226Ra, 232Th, ambient dose equivalent rate, and Pb. Ecological risk index (RI) and cumulative pollution index (IPI) values in Mamuju are 2.05 and 125, respectively, which are possible hazards to human health as a result. Pb concentration in the Mamuju soil samples ranged from 109 to 744 mg kg-1, exceeding the worldwide average of 27 mg kg-1.

13.
Genes Environ ; 44(1): 1, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983691

RESUMEN

BACKGROUND: The human population residing in monazite bearing Kerala coast are exposed to chronic low dose and low dose rate external gamma radiation due to Th232 deposits in its beach sand. The radiation level in this area varies from < 1.0 to 45.0 mGy/year. This area serves as an ideal source for conducting large-scale epidemiological studies for assessing risk of low dose and low dose rate radiation exposure on human population. The areas with a dose level of ≤1.50 mGy/year are considered as normal level natural radiation areas (NLNRAs) and areas with > 1.50 mGy/year, as high level natural radiation areas (HLNRAs). HLNRAs were further stratified into three dose groups of 1.51-3.0 mGy/year, 3.01-6.00 mGy/year and > 6.0 mGy/year. The present study evaluates the effects of chronic low dose radiation (LDR) exposure on the birth prevalence of Congenital Heart Diseases (CHD) among the live newborns monitored in hospital based prospective study from NLNRAs and HLNRAs of Kerala coast, India. METHODOLOGY: Consecutive newborns were monitored from two hospital units located in the study area for congenital malformations. Referred CHD cases among the newborns screened were confirmed by conducting investigations such as pulse oximetry, chest X-ray, electrocardiogram and echocardiogram etc. RESULTS: Among the newborns screened, 289 CHDs were identified with a frequency of 1.49‰ among 193,634 livebirths, which constituted 6.03% of overall malformations and 16.29% of major malformations. Multiple logistic regression analysis suggested that the risk of CHD among the newborns of mothers from HLNRAs with a dose group of 1.51-3.0 mGy/year was significantly lower as compared to NLNRA (OR = 0.72, 95% CI: 0.57-0.92), whereas it was similar in HLNRA dose groups of 3.01-6.00 mGy/year (OR = 0.55, 95% CI: 0.31-1.00) and ≥ 6.0 mGy/year (OR = 0.96, 95% CI: 0.50-1.85). The frequency of CHDs did not show any radiation dose related increasing trend. However, a significant (P = 0.005) reduction was observed in the birth prevalence of CHDs among the newborns from HLNRA (1.28‰) as compared to NLNRA (1.79‰). CONCLUSION: Chronic LDR exposure did not show any increased risk on the birth prevalence of CHDs from high-level natural radiation areas of Kerala coast, India. No linear increasing trend was observed with respect to different background dose groups. The frequency of CHD was observed to be 1.49 per 1000 livebirths, which was similar to the frequency of severe CHD rate reported elsewhere in India and was much less than the reported frequency of 9 per thousand.

14.
Artículo en Inglés | MEDLINE | ID: mdl-33672145

RESUMEN

After the Fukushima Daiichi nuclear accident of 2011, interest regarding radiation safety in everyday life has increased considerably. This study investigates the general public's current level of awareness of six warning pictograms in regard to medical and natural radiation safety utilized under ISO 7010, as per Korea industrial regulations. Namely, it tests whether survey respondents can recognize pictograms related to radiation safety according to their purpose, as their inability to do so poses a serious safety problem. The empirical analysis results regarding the awareness levels for radiation safety pictograms are as follows. First, 63.3% of the respondents were unable to correctly identify the pictograms; that is, their level of understandings of the six pictograms related to everyday radiation were low. Second, the mean score for the correct responses to the question of what the six pictograms indicated in relation to everyday radiation safety was also relatively low, with a mean score of 2.79 and a standard deviation of 1.447. The primary reasons for the low awareness and understanding levels were identified to be insufficient education related to radiation safety in schools. Additionally, it is necessary to revise and rectify current warning pictograms established by the Korea Industrial Standards and ISO 7010. This study is thus significant in that it identifies the level of understanding of the pictograms and suggests the need for improvement as a diversified effort toward improving everyday radiation safety.


Asunto(s)
Comprensión , Reconocimiento en Psicología , Escolaridad , República de Corea , Encuestas y Cuestionarios
15.
Artículo en Inglés | MEDLINE | ID: mdl-33573028

RESUMEN

Radon is a colorless, odorless, and tasteless noble gas, causally related with the onset of lung cancer. We aimed to describe the distribution of radon exposure in the municipality of Manizales, Colombia, in order to estimate the population's exposure and establish the percentage of dwellings that surpass reference levels. A cross-sectional study representing all geographical areas was carried out by measuring indoor radon concentrations. Participants answered a short questionnaire. Alpha-track type radon detectors were installed in all residences for six months. The detectors were subsequently processed at the Galician Radon Laboratory, an accredited laboratory at the University of Santiago de Compostela. A total of 202 homes were measured. Seventy-seven percent of the sampled houses were three stories high, their median age was 30 years, and half were inhabited by three people or fewer. For most dwellings, the building materials of walls and flooring were brick and covered cement, respectively. Results showed a geometric mean of radon concentration of 8.5 Bq/m3 and a maximum value of 50 Bq/m3. No statistically significant differences were found either between the geometric mean of the dwelling's site, the height at which detectors were placed inside the home, or the wall and flooring materials, or between mean 222Rn concentrations in rural and urban areas. No dwelling surpassed the 222Rn reference level established by the WHO. This study shows that residential radon levels in Manizales, Colombia, seem to be low, though a more in-depth approach should be carried out. Despite these results, it is essential to create a national radon program and establish a radon concentration reference level for Colombia in line with international recommendations.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Monitoreo de Radiación , Radón , Adulto , Contaminantes Radiactivos del Aire/análisis , Contaminación del Aire Interior/análisis , Ciudades , Colombia , Estudios Transversales , Vivienda , Humanos , Proyectos Piloto , Radón/análisis
16.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-974152

RESUMEN

For ordinary people, when it comes to nuclear, radiation occurs to their mind, for fear of nuclear. In fact, radiation is almost everywhere. More than 80 percent of our exposure is from natural sources and only less than 20 percent is human made-mainly from radiation applications used in medicine. The dose we absorb from natural background radiation is about 2.4 mSv per year.

17.
Artículo en Inglés | MEDLINE | ID: mdl-32599800

RESUMEN

Radon gas is a pulmonary carcinogen and the second leading cause of lung cancer after smoking. There are many countries that have not implemented measures to reduce the risk it poses to the general population. The aim of this study was to locate available evidence on exposure to residential radon and the regulations to monitor and control this across Central and South America, by conducting a review of the scientific literature and government documents in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review included 31 studies which had taken measurements of radon in these countries. While Brazil, Argentina, and Peru have undertaken most research, no country in Central and South America has a national map of exposure to residential radon. The prevalence of exposure to radon was uneven, both among the different countries and within individual countries. No country has regulations to prevent the entry of radon into homes, and nine countries have not set maximum permissible concentrations for residential radon. There is a limited number of studies in South and Central America, with a limited spatial coverage, and there is a need to improve knowledge on exposure to residential radon and its effects, and for governments to take the necessary actions to introduce preventive measures in their statutory regulations.


Asunto(s)
Contaminación del Aire Interior , Exposición a Riesgos Ambientales , Neoplasias Inducidas por Radiación , Radón , Argentina , Brasil , América Central , Humanos , Neoplasias Pulmonares , Perú , Radón/análisis , Radón/toxicidad
18.
Int J Radiat Biol ; 96(6): 734-739, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32149571

RESUMEN

Background: Single Nucleotide Polymorphisms (SNPs) at DNA repair genes are considered as potential biomarkers of radio-sensitivity. The coastal belt of Kerala in south west India has a patchy distribution of monazite in its beach sand that contains Th-232 and its decay products. Thus, radiation levels in this area vary from <1.0mGy to 45.0mGy/year. The areas with external gamma radiation dose >1.5mGy/year are considered as High-Level Natural Radiation Areas (HLNRA) and ≤ 1.5mGy/year are Normal Level Natural Radiation Area (NLNRA).Objective: In the present study, an attempt was made to evaluate the influence of chronic low dose radiation exposure on DNA repair gene polymorphisms in NLNRA and HLNRA population of Kerala coast.Materials and methods: Genomic DNA was isolated from venous blood samples of 246 random, healthy individuals (NLNRA, N = 104; HLNRA, N = 142) and genotyping of five SNPs such as X-ray repair cross complementing 1(XRCC1 Arg399Gln), X-ray repair cross complementing 3 (XRCC3 Thr241Met], Protein kinase, DNA-activated, catalytic subunit (PRKDC) (X-ray repair cross-complementing group 7, XRCC7 G/T), nei like DNA glycosylase 1 (NEIL1 G/T) and DNA ligase 1 (LIG1 A/C) was carried out using PCR based restriction fragment length polymorphism (PCR-RFLP) followed by silver staining.Results: Our results showed no significant difference in genotype frequencies in HLNRA vs NLNRA at three of the five SNPs studied i.e. XRCC1 Arg399Gln (χ2(2) = 5.85, p = .054), XRCC3 Thr241Met (χ2(1) = 0.71, p = .339), PRKDC (XRCC7 G/T) (χ2(2) = 3.72, p = .156), whereas significant difference was observed at NEIL1 G/T (χ2(2) =8.71, p = .013) and LIG1 A/C (χ2(2) = 7.66, p = .022). The odds of heterozygote to homozygote genotypes in HLNRA relative to NLNRA at XRCC1 Arg399Gln (OR = 1.96, 95% CI: 1.13-3.40), XRCC3 Thr241Met (OR = 0.73, 95% CI: 0.41-1.31), PRKDC (XRCC7 G/T), (OR = 0.81; 95% CI: 0.48-1.38), NEIL1 G/T (OR = 0.54; 95% CI: 0.31-0.96) and LIG1 A/C (OR = 1.62; 95% CI: 0.97-2.69) was also not significantly different in HLNRA vs NLNRA, except at XRCC1 and NEIL1.Conclusion: The genotype frequencies at three of these SNPs i.e. XRCC1 Arg399Gln, XRCC3 Thr241Met and PRKDC (XRCC7 G/T) were similar, whereas NEIL1 G/T and LIG1 A/C showed significant difference between HLNRA and NLNRA population. However, further research using more number of SNPs in a larger cohort is required in this study area.


Asunto(s)
Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Polimorfismo de Nucleótido Simple , Dosis de Radiación , ADN Glicosilasas/genética , ADN Ligasa (ATP)/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , India , Factores de Tiempo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
19.
Environ Sci Pollut Res Int ; 27(1): 143-157, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31832968

RESUMEN

Natural radioactivity is a public health concern worldwide. Its deleterious effects are largely associated with emitting ionizing particles which generate innumerable toxicological consequences to human being. The present study aimed to describe the research state of the art on natural radioactivity in Brazil through a systematic review limited to articles published in the twenty-first century in the PubMed, SciELO, Lilacs, and Google Scholar databases. A total of 55 research articles were considered for this purpose. Based on the collected sample types, the radiation analysis in most of the scientific reports was performed on solid samples (soil/sediment/rocks), followed by water and air. In fact, most of the available information came from geological studies. A wide range of concentrations and a variety of radionuclides have been assessed, with radium being the most cited. Most of the studies described radiation levels above the international guidelines, and consider the Brazilian territory as a high natural background radiation region (HNBR). In comparison with other HNBR areas, the scientific information about the related risks to human health is still scarce. There is uncertainty about the real impact of natural radioactivity on human health, as there is a lack of scientific information for most of the country about this issue. The analysis and comparison of the available information highlights the potential risks linked to natural radioactivity and the need to incorporate suitable environmental management policies about this issue.


Asunto(s)
Radiación de Fondo , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Brasil , Geología , Humanos , Radiactividad , Radioisótopos/análisis , Radio (Elemento)/análisis , Suelo
20.
J Radiat Res ; 60(6): 759-767, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31665388

RESUMEN

This work consists of the detection and quantification of the concentration levels of radioactive gas radon-222 (222Rn) of natural origin, as well as the determination of the critical points and the estimation of the effective dose absorbed by the tourists and guides inside the Jumandy cavern in Napo, Ecuador. According to the feasibility map of uranium of Ecuador, the study area is located in one of the top-priority areas for obtaining uranium, suggesting possible radioactivity in this unstudied region. The measurements were carried out from July to October of 2017, in three different monitoring points inside the cavern. The average radon concentrations measured in the cavern exceeded the maximum recommended environmental level by a factor of 28, and the effective dose absorbed by the guides exceeded the recommended maximum by a f actor of 10. Meteorological parameters such as temperature and relative humidity have an impact on the 222Rn concentrations in different parts of the cave.


Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Cuevas/química , Monitoreo de Radiación , Radón/análisis , Relación Dosis-Respuesta en la Radiación , Ecuador , Geografía , Humedad , Minerales/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA