Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 262: 115179, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37356400

RESUMEN

Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.

2.
Materials (Basel) ; 15(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36556657

RESUMEN

INTRODUCTION: the article discusses the effect of the complex of active mineral additives consisting of silica and fly ash, and a fine aggregate, including finely ground natural-white quartz sand for partial replacement of river sand, on the mechanical properties of high-strength concrete containing steel fiber. MATERIALS AND METHODS: high-strength concrete containing Dramix®3D 65/35 steel fiber in the amount of 100 kg per 1 m3 of concrete mixture was suggested where 22% to 100% of river sand was replaced by finely ground white natural sand of the particle size of 5 to 1800 µm and containing the complex of active mineral additives for partial replacement of cement as part of a multicomponent binder, consisting of low-calcium fly ash of thermal power plants and silica and containing, respectively, 20, 30, 40% fly ash and from 5 to 15% silica by weight of the binder. RESULTS: research results have shown that 100% replacement of river sand with finely ground natural white sand, in concrete containing 20% of the mass as part of a multicomponent binder, fly ash and from 5 to 15% by weight of silica, contributes to the increase of its strength properties: the values of concrete compressive strength after 28 days were in the range from 118.5 to 128 MPa, tensile strength during bending and splitting, respectively, from 18.8 to 25.4 MPa and from 10.2 to 11.9 MPa, which is higher than the strength of concrete samples containing river sand. CONCLUSIONS: the achieved results have demonstrated the efficiency of using finely ground natural white sand as an alternative to river sand for producing high-strength concrete, thus helping to save the river sand resources in Vietnam. The use of fly ash and micro silicon, which are power and metallurgy wastes, as part of a multicomponent binder in order to partially replace cement reduces the carbon footprint in the production of binders and will also have a beneficial effect on environmental protection against industrial waste pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA