Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Vet Sci ; 8: 762107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912876

RESUMEN

In the present study, we screened 502 natural product compounds against the in vitro growth of Babesia (B.) bovis. Then, the novel and potent identified compounds were further evaluated for their in vitro efficacies using viability and cytotoxicity assays. The in vivo inhibitory effects of the selected compounds were evaluated using B. microti "rodent strain" in mice model. Three potent compounds, namely, Rottlerin (RL), Narasin (NR), Lasalocid acid (LA), exhibited the lowest IC50 (half-maximal inhibitory concentration) as follows: 5.45 ± 1.20 µM for RL, 1.86 ± 0.66 µM for NR, and 3.56 ± 1.41 µM for LA. The viability result revealed the ability of RL and LA to prevent the regrowth of treated parasite at 4 × IC50 and 2 × IC50, respectively, while 4 × IC50 of NR was sufficient to stop the regrowth of parasite. The hematology parameters of B. microti in vivo were different in the NR-treated groups as compared to the infected/untreated group. Interestingly, intraperitoneal administration of NR exhibiting inhibition in the growth of B. microti in mice was similar to that observed after administration of the commonly used antibabesial drug, diminazene aceturate (DA) (76.57% for DA, 74.73% for NR). Our findings indicate the richness of natural product compounds by novel potent antibabesial candidates, and the identified potent compounds, especially NR, might be used for the treatment of animal babesiosis.

2.
J Parasit Dis ; 45(4): 1152-1171, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34790000

RESUMEN

The mortality rate of leishmaniasis is increasing at an alarming rate and is currently second to malaria amongst the other neglected tropical diseases. Unfortunately, many governments and key stakeholders are not investing enough in the development of new therapeutic interventions. The available treatment options targeting different pathways of the parasite have seen inefficiencies, drug resistance, and toxic side effects coupled with longer treatment durations. Numerous studies to understand the biochemistry of leishmaniasis and its pathogenesis have identified druggable targets including ornithine decarboxylase, trypanothione reductase, and pteridine reductase, which are relevant for the survival and growth of the parasites. Another plausible target is the sterol biosynthetic pathway; however, this has not been fully investigated. Sterol biosynthesis is essential for the survival of the Leishmania species because its inhibition could lead to the death of the parasites. This review seeks to evaluate how critical the enzymes involved in sterol biosynthetic pathway are to the survival of the leishmania parasite. The review also highlights both synthetic and natural product compounds with their IC50 values against selected enzymes. Finally, recent advancements in drug design strategies targeting the sterol biosynthesis pathway of Leishmania are discussed.

3.
Parasitol Int ; 85: 102437, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34389492

RESUMEN

Babesia gibsoni is a tick-transmitted intraerythrocytic apicomplexan parasite that causes babesiosis in dogs. Due to the strong side effects and lack of efficacy of current drugs, novel drugs against B. gibsoni are urgently needed. Natural products as a source for new drugs is a good choice for screening drugs against B. gibsoni. The current study focuses on identifying novel potential drugs from natural products against B. gibsoniin vitro. Parasite inhibition was verified using a SYBR green I-based fluorescence assay. A total of 502 natural product compounds were screened for anti-B. gibsoni activity in vitro. Twenty-four compounds showed high growth inhibition (>80%) on B. gibsoni and 5 plant-derived compounds were selected for further study. The half-maximal inhibitory concentration (IC50) values of lycorine (LY), vincristine sulfate (VS), emetine·2HCl (EME), harringtonine (HT) and cephaeline·HBr (CEP) were 784.4 ± 3.3, 643.0 ± 2.8, 253.1 ± 1.4, 23.4 ± 1.2, and 108.1 ± 4.3 nM, respectively. The Madin-Darby canine kidney (MDCK) cell line was used to assess cytotoxicity of hit compounds. All compounds showed minimal toxicity to the MDCK cells. The effects of hit compounds combined with diminazene aceturate (DA) on B. gibsoni were further evaluated in vitro. VS, EME, HT or CEP combined with DA showed synergistic effects against B. gibsoni, whereas LY combined with DA showed an antagonistic effect against B. gibsoni. The results obtained in this study indicate that LY, VS, EME, HT and CEP are promising compounds for B. gibsoni treatment.


Asunto(s)
Antiprotozoarios/farmacología , Babesia/efectos de los fármacos , Productos Biológicos/farmacología , Diminazeno/análogos & derivados , Animales , Babesiosis/parasitología , Babesiosis/prevención & control , Diminazeno/farmacología , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/prevención & control , Perros , Evaluación Preclínica de Medicamentos , Concentración 50 Inhibidora
4.
Molecules ; 24(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234337

RESUMEN

Buruli ulcer is a neglected tropical disease caused by the bacterium Mycobacterium ulcerans. Its virulence is attributed to the dermo-necrotic polyketide toxin mycolactone, whose synthesis is regressed when its iron acquisition system regulated by the iron-dependent regulator (ideR) is deactivated. Interfering with the activation mechanism of ideR to inhibit the toxin's synthesis could serve as a possible cure for Buruli ulcer. The three-dimensional structure of the ideR for Mycobacterium ulcerans was generated using homology modeling. A library of 832 African natural products (AfroDB), as well as five known anti-mycobacterial compounds were docked against the metal binding site of the ideR. The area under the curve (AUC) values greater than 0.7 were obtained for the computed Receiver Operating Characteristics (ROC) curves, validating the docking protocol. The identified top hits were pharmacologically profiled using Absorption, Distribution, Metabolism, Elimination and Toxicity (ADMET) predictions and their binding mechanisms were characterized. Four compounds with ZINC IDs ZINC000018185774, ZINC000095485921, ZINC000014417338 and ZINC000005357841 emerged as leads with binding energies of -7.7 kcal/mol, -7.6 kcal/mol, -8.0 kcal/mol and -7.4 kcal/mol, respectively. Induced Fit Docking (IFD) was also performed to account for the protein's flexibility upon ligand binding and to estimate the best plausible conformation of the complexes. Results obtained from the IFD were consistent with that of the molecular docking with the lead compounds forming interactions with known essential residues and some novel critical residues Thr14, Arg33 and Asp17. A hundred nanoseconds molecular dynamic simulations of the unbound ideR and its complexes with the respective lead compounds revealed changes in the ideR's conformations induced by ZINC000018185774. Comparison of the lead compounds to reported potent inhibitors by docking them against the DNA-binding domain of the protein also showed the lead compounds to have very close binding affinities to those of the potent inhibitors. Interestingly, structurally similar compounds to ZINC000018185774 and ZINC000014417338, as well as analogues of ZINC000095485921, including quercetin are reported to possess anti-mycobacterial activity. Also, ZINC000005357841 was predicted to possess anti-inflammatory and anti-oxidative activities, which are relevant in Buruli ulcer and iron acquisition mechanisms, respectively. The leads are molecular templates which may serve as essential scaffolds for the design of future anti-mycobacterium ulcerans agents.


Asunto(s)
Proteínas Bacterianas/química , Productos Biológicos/química , Úlcera de Buruli/tratamiento farmacológico , Mycobacterium ulcerans/química , Proteínas Represoras/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Sitios de Unión/efectos de los fármacos , Úlcera de Buruli/microbiología , Biología Computacional , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Mycobacterium ulcerans/efectos de los fármacos , Mycobacterium ulcerans/patogenicidad , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética
5.
BMC Bioinformatics ; 19(Suppl 14): 419, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30453886

RESUMEN

BACKGROUND: Ebola still remains as one of the most problematic infectious diseases in Africa with a high rate of mortality. Although this disease has been known for an almost half-century, there are no vaccines and drugs available in the market to treat Ebola. Zaire ebolavirus (EBOV), a single-stranded RNA virus which belongs to Filoviridae family and Mononegavirales order, is one of the virus causing Ebola. As one of seven proteins that EBOV encodes, Ebola virus nucleoprotein (EBOV NP) plays an imperative role in EBOV proliferation cycle. Therefore, the development of a new Ebola treatment can be targeted towards EBOV NP. RESULTS: In this work, we screened about 190,084 natural product compounds from ZINC15 database through in silico virtual screening and flexible docking simulation. Furthermore, the bioavailability and toxicity prediction have been conducted as well. Two best ligands according to the simulation and prediction tests were progressed into the molecular dynamics simulation. CONCLUSION: In the end, we found that our proposed ligands, namely α-lipomycin (ZINC56874155) and 3-(((S)-1-amino-1,2,3,4-tetrahydroisoquinolin-5-yl)methyl)-5-((5-((5R,7S)-5,7-dihydroxy-3-oxodecyl)-2-hydroxyphenoxy) methyl)pyrrolo[3,4-b]pyrrol-5-ium (ZINC85628951), showed the promising results to be developed as a lead compounds for treating Ebola. Therefore, an experimental study is required to validate their inhibition activities against EBOV NP.


Asunto(s)
Productos Biológicos/química , Descubrimiento de Drogas , Ebolavirus/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nucleocápside/química , Productos Biológicos/farmacocinética , Productos Biológicos/toxicidad , Pruebas de Carcinogenicidad , Fiebre Hemorrágica Ebola , Humanos , Ligandos , Pruebas de Mutagenicidad , Termodinámica
6.
Eur J Med Chem ; 156: 13-20, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30006159

RESUMEN

Piperlongumine, also known as piplartine, is an amide alkaloid of Piper longum L. (long piper), a medical plant known from Ayurvedic medicine. Although was discovered well over fifty years ago, its pharmacological properties have been uncovered in the past decade. In particular, piperlongumine has been most extensively studied as a potential anticancer agent. Piperlongumine has exhibited cytotoxicity against a broad spectrum of human cancer cell lines, as well as demonstrated antitumor activity in rodents. Piperlongumine has also been found to be a proapoptotic, anti-invasive, antiangiogenic agent and synergize with modern chemotherapeutic agents. Because of its clinical potential, several studies were undertaken to obtain piperlongumine analogues, which have exhibited more potent activity or more appropriate drug-like parameters. In this review, the synthesis of piperlongumine analogues and piperlongumine-based hybrid compounds, as well as their anticancer properties and the molecular basis for their activity are explored. General structure-activity relationship conclusions are drawn and directions for the future research are indicated.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Dioxolanos/química , Dioxolanos/farmacología , Neoplasias/tratamiento farmacológico , Piper/química , Animales , Antineoplásicos Fitogénicos/síntesis química , Técnicas de Química Sintética/métodos , Dioxolanos/síntesis química , Descubrimiento de Drogas/métodos , Humanos , Piperidonas/síntesis química , Piperidonas/química , Piperidonas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA