Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
J Pharm Pharmacol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276338

RESUMEN

OBJECTIVES: The aim of this study was to investigate the pharmacokinetics (PK) of poorly soluble compounds when administered intramuscularly (i.m.) as crystalline particles of different sizes. METHODS: Three uncharged compounds (griseofulvin, AZ'72, and AZ'07) with varying aqueous solubility were dosed to mice at 10 and 50 mg/kg as nano- and microparticle formulations. The PK of the compounds was evaluated. KEY FINDINGS: The smaller particles of the drugs resulted in higher maximum plasma concentration (Cmax) and area under the plasma concentration-time profile (AUC) at 50 mg/kg. There was a dose-proportional increase in AUC but less than dose dose-proportional increase in Cmax. The evaluation at 10 mg/kg was more complex as increased exposure for nanoparticles was only observed for griseofulvin which has the highest solubility. In addition, there was an increase in half-life with an increase in dose. CONCLUSIONS: This study highlights that general expectations based on in vitro dissolution (i.e. that smaller particles dissolve faster than larger particles when surrounded by liquid) do not always translate to in vivo and demonstrates the importance of understanding the physicochemical properties of the drug, the characteristics of the formulations and the microphysiology at the delivery site.

2.
Int J Pharm ; 664: 124614, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39168286

RESUMEN

Deferasirox (DFS) is an oral iron chelator that is employed in retinal ailments as a neuroprotectant against retinal injury and thus has utility in treating disorders such as excitoneurotoxicity and age-related macular degeneration (AMD). However, the conventional oral route of administration can present several disadvantages, e.g., the need for more frequent dosing and the first-pass effect. Microneedles (MNs) are minimally invasive systems that can be employed for intrascleral drug delivery without pain and can advantageously replace intravitreal injections therapy (IVT) as well as conventional oral routes of delivery for DFS. In this study, DFS was formulated into a nanosuspension (NS) through wet media milling employing PVA as a stabilizer, which was successfully loaded into polymeric dissolving MNs. DFS exhibited a 4-fold increase in solubility in DFS-NS compared to that of pure DFS. Moreover, the DFS-NSs exhibited excellent short-term stability and enhanced thermal stability, as confirmed through thermogravimetric analysis (TGA) studies. The mechanical characterization of the DFS-NS loaded ocular microneedles (DFS-NS-OcMNs), revealed that the system was sufficiently strong for effective scleral penetration. Optical coherence tomography (OCT) images confirmed the insertion of 81.23 ± 7.35 % of the total height of the MN arrays into full-thickness porcine sclera. Scleral deposition studies revealed 64 % drug deposition after just 5 min of insertion from DFS-NS-loaded ocular microneedles (OcMNs), which was almost 5 times greater than the deposition from pure DFS-OcMNs. Furthermore, both DFS and DFS-NS-OcMN exhibited remarkable cell viability when evaluated on human retinal pigment (ARPE) cells, suggesting their safety and appropriateness for use in the human eye. Therefore, loading DFS-NS into novel MN devices is a promising technique for effectively delivering DFS to the posterior segment of the eye in a minimally invasive manner.


Asunto(s)
Deferasirox , Sistemas de Liberación de Medicamentos , Quelantes del Hierro , Agujas , Deferasirox/administración & dosificación , Deferasirox/farmacocinética , Animales , Porcinos , Quelantes del Hierro/administración & dosificación , Solubilidad , Suspensiones , Esclerótica/metabolismo , Humanos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Nanopartículas/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Línea Celular , Administración Oftálmica , Microinyecciones/métodos , Estabilidad de Medicamentos , Tomografía de Coherencia Óptica
3.
Drug Dev Ind Pharm ; : 1-15, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39212605

RESUMEN

OBJECTIVE: The present study investigates the production of mebendazole nanocrystal formulations by wet media milling. SIGNIFICANCE: Nanocrystal formulations are expected to enhance the dissolution properties of mebendazole, which possesses poor solubility, highly dependent on crystal polymorphism. METHODS: A Box-Behnken design was employed to study the effects of formulation and process variables on the nanocrystal size and ζ-potential. The optimal nanosuspensions were solidified by spay-drying and freeze-drying with and without mannitol, and the effects of the drying method on the reconstitution of the nanosuspension was studied. Additionally, their physicochemical properties were determined, while the mechanism of fracture and stabilizer adsorption were investigated by atomistic simulations. RESULTS: Poloxamer 407 is the most suitable stabilizer, while the bead size, milling speed, and stabilizer content significantly affect the diameter. The ζ-potential is affected by the stabilizer concentration depending on bead size. Energy-vector diagrams revealed a slip plane in the lattice of form C, while molecular dynamics simulations revealed strong interactions between stabilizer and crystal surface. Both drying processes induce polymorphic transformation to form A, which, however, can be partially prevented by the addition of mannitol in freeze-drying, at the expense of suspension redispersibility. The spray-dried nanosuspensions exhibited substantially enhanced dissolution profile compared to neat mebendazole, probably due to reduction of particle size, despite transformation to the unfavorable form A. CONCLUSIONS: Nanocrystal formulations exhibited significant dissolution enhancement, while experimental design and atomistic simulations provided useful insights into the mechanism of their formation and stability.

4.
Assay Drug Dev Technol ; 22(6): 278-307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962889

RESUMEN

The objective of the present study was to optimize the microwave-assisted synthesis of the acrylamide graft copolymer of Acacia nilotica gum (AM-co-ANG). Furthermore, graft copolymer was used for the formulation of a nanoparticulate system using a novel top to bottom solvent antisolvent technique for the delivery of melatonin. Grafting of ANG was optimized by using 32 factorial design, where concentrations of polymer and monomer (acrylamide) were used as independent variables and swelling index in acidic (0.1 N HCl) and basic (1 N NaOH) pH. Grafted polymers were further used to develop and optimize nanoparticulate system using concentration of the graft copolymer and concentration of drug as independent variables. The size of the nanoformulation and entrapment efficiency were selected as dependent variables. Difference in infrared spectrum and absorbance maxima in the ultraviolet region confirm that grafting has taken place. Porous structure and a higher contact angle confirmed hydrophobic nature of AM-co-ANG as compared with the native polymer. Acrylamide graft copolymers show more swelling in 1 N NaOH as compared with 0.1 N HCl. In vitro toxicity studies in hepatic (HepG2 cell line), brain (SHSY5Y cell line), and skin (HaCaT cell line) cells easily predict that synthesized polymer have no cytotoxicity. The entrapment efficiency ranged from 55.24 ± 1.35% to 73.21 ± 1.83%. A nonlinear correlation was observed between independent and dependent variables, as confirmed by multivariate analysis of variance, surface regression, and the correlation report. The prepared formulations were able to release drug up to 12 h. The regression coefficient easily predicted that most of the formulations followed Baker-Lonsdale drug release kinetics.


Asunto(s)
Acrilamida , Melatonina , Nanopartículas , Acrilamida/química , Nanopartículas/química , Humanos , Melatonina/farmacología , Melatonina/química , Células Hep G2 , Goma Arábiga/química , Acacia/química , Estabilidad de Medicamentos , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
5.
Curr Pharm Des ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988170

RESUMEN

Many brain diseases pose serious challenges to human life. Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common neurodegenerative diseases that seriously threaten human health. Glioma is a common malignant tumor. However, drugs cannot cross physiological and pathological barriers and most therapeutic drugs cannot enter the brain because of the presence of the Blood-brain Barrier (BBB) and Blood- -brain Tumor Barrier (BBTB). How to enable drugs to penetrate the BBB to enter the brain, reduce systemic toxicity, and penetrate BBTB to exert therapeutic effects has become a challenge. Nanosuspension can successfully formulate drugs that are difficult to dissolve in water and oil by using surfactants as stabilizers, which is suitable for the brain target delivery of class II and IV drugs in the Biopharmaceutical Classification System (BCS). In nanosuspension drug delivery systems, the physical properties of nanostructures have a great impact on the accumulation of drugs at the target site, such as the brain. Optimizing the physical parameters of the nanosuspension can improve the efficiency of brain drug delivery and disease treatment. Therefore, the key challenges, influencing factors, and future perspectives of nanosuspension in enhancing brain drug delivery are summarized and reviewed here. This article aims to provide a better understanding of nanosuspension formulation technology used for brain delivery and strategies used to overcome various physiological barriers.

6.
Int J Pharm ; 661: 124474, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019297

RESUMEN

The aim of this study was to rapidly develop a sufficiently robust andrographolide nanosuspension (AG-NS) system using hummer acoustic resonance (HAR) technology. The system can effectively improve the dissolution properties of AG, while having high stability and scale-up adaptability. The formulation of AG-NS was optimized in a high-throughput manner using HAR technology and the preparation process was optimized stepwise. Optimal AG-NS with Z-Ave = 223.99 ± 3.16 nm, PDI=0.095 ± 0.007 and zeta potential = -33.20 ± 0.58 mV was successfully prepared with Polyvinylpyrrolidone K30 and Sodium dodecyl sulfate. The optimal prescription was successfully scaled up 100 and 150 times using HAR technology, which was the initial exploration of its commercial scale production. AG-NS was solidified using freeze drying and fluid bed technology, respectively. The optimal AG-NS and its solidified products were exhaustively characterized using various analytical techniques. The high energy input of HAR technology and drying process converted part of the drug into the amorphous state. The in-vitro drug dissolution studies demonstrated relatively higher drug dissolution for AG-NS and its solidified products compared to controls at both the dissolution media (pH 1.2 buffer and pH 6.8 buffer). AG-NS and its solidified products successfully maintained their physical stability in short-term stability and accelerated stability experiments, respectively.


Asunto(s)
Diterpenos , Liberación de Fármacos , Nanopartículas , Suspensiones , Diterpenos/química , Nanopartículas/química , Estabilidad de Medicamentos , Liofilización , Solubilidad , Povidona/química , Tecnología Farmacéutica/métodos , Composición de Medicamentos/métodos , Acústica , Tamaño de la Partícula , Química Farmacéutica/métodos , Dodecil Sulfato de Sodio/química
7.
AAPS PharmSciTech ; 25(6): 161, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992175

RESUMEN

Drug solubility and dissolution remain a significant challenge in pharmaceutical formulations. This study aimed to formulate and evaluate repanglinide (RPG) nanosuspension-based buccal fast-dissolving films (BDFs) for dissolution enhancement. RPG nanosuspension was prepared by the antisolvent-precipitation method using multiple hydrophilic polymers, including soluplus®, polyvinyl alcohol, polyvinyl pyrrolidine, poloxamers, and hydroxyl propyl methyl cellulose. The nanosuspension was then directly loaded into BDFs using the solvent casting technique. Twelve formulas were prepared with a particle size range of 81.6-1389 nm and PDI 0.002-1 for the different polymers. Nanosuspensions prepared with soluplus showed a favored mean particle size of 82.6 ± 3.2 nm. The particles were spherical and non-aggregating, as demonstrated by SEM imaging. FTIR showed no interaction between soluplus and RPG. Faster dissolution occurred for the nanosuspension in comparison with pure RPG (complete release vs 60% within 30 min). The nanosuspension was successfully incorporated into BDFs. The optimum film formula showed 28 s disintegration time, and 97.3% RPG released within 10 min. Ex-vivo permeation profiles revealed improved RPG nanosuspension permeation with the cumulative amount of RPG permeated is103.4% ± 10.1 and a flux of 0.00275 mg/cm2/min compared to 39.3% ± 9.57 and a flux of 0.001058 mg/cm2/min for pure RPG. RPG was successfully formulated into nanosuspension that boosted drug dissolution and permeation. The selection of the ultimate NP formula was driven by optimal particle size, distribution, and drug content. Soluplus NPs were shown to be the successful formulations, which were further incorporated into a buccal film. The film was evaluated for ex-vivo permeation, confirming successful RPG formulation with improved performance compared to pure drugs.


Asunto(s)
Carbamatos , Nanopartículas , Tamaño de la Partícula , Piperidinas , Solubilidad , Suspensiones , Nanopartículas/química , Piperidinas/química , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Carbamatos/química , Carbamatos/administración & dosificación , Carbamatos/farmacocinética , Animales , Química Farmacéutica/métodos , Liberación de Fármacos , Polivinilos/química , Polímeros/química , Administración Bucal , Polietilenglicoles/química , Composición de Medicamentos/métodos
8.
AAPS PharmSciTech ; 25(6): 164, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997569

RESUMEN

This study employed a Quality by Design (QbD) approach to spray dry amorphousclotrimazole nanosuspension (CLT-NS) consisting of Soluplus® and microcrystallinecellulose. Using the Box-Behnken Design, a systematic evaluation was conducted toanalyze the impact of inlet temperature, % aspiration, and feed rate on the criticalquality attributes (CQAs) of the clotrimazole spray-dried nanosuspension (CLT-SDNS). In this study, regression analysis and ANOVA were employed to detect significantfactors and interactions, enabling the development of a predictive model for the spraydrying process. Following optimization, the CLT-SD-NS underwent analysis using Xraypowder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), Dynamic Scanning Calorimetry (DSC), and in vitro dissolution studies. The resultsshowed significant variables, including inlet temperature, feed rate, and aspiration rate,affecting yield, redispersibility index (RDI), and moisture content of the final product. The models created for critical quality attributes (CQAs) showed statistical significanceat a p-value of 0.05. XRPD and DSC confirmed the amorphous state of CLT in theCLT-SD-NS, and FTIR indicated no interactions between CLT and excipients. In vitrodissolution studies showed improved dissolution rates for the CLT-SD-NS (3.12-foldincrease in DI water and 5.88-fold increase at pH 7.2 dissolution media), attributed torapidly redispersing nanosized amorphous CLT particles. The well-designed studyutilizing the Design of Experiments (DoE) methodology.


Asunto(s)
Clotrimazol , Nanopartículas , Suspensiones , Clotrimazol/química , Clotrimazol/administración & dosificación , Nanopartículas/química , Suspensiones/química , Secado por Pulverización , Química Farmacéutica/métodos , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Tamaño de la Partícula , Rastreo Diferencial de Calorimetría/métodos , Temperatura , Composición de Medicamentos/métodos , Polivinilos/química , Difracción de Rayos X/métodos , Polietilenglicoles
9.
J Control Release ; 372: 304-317, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906420

RESUMEN

Parkinson's disease (PD), affecting about ten million people globally, presents a significant health challenge. Rotigotine (RTG), a dopamine agonist, is currently administered as a transdermal patch (Neupro®) for PD treatment, but the daily application can be burdensome and cause skin irritation. This study introduces a combinatorial approach of dissolving microarray patch (MAP) and nanosuspension (NS) for the transdermal delivery of RTG, offering an alternative to Neupro®. The RTG-NS was formulated using a miniaturized media milling method, resulting in a nano-formulation with a mean particle size of 274.09 ± 7.43 nm, a PDI of 0.17 ± 0.04 and a zeta potential of -15.24 ± 2.86 mV. The in vitro dissolution study revealed an enhanced dissolution rate of the RTG-NS in comparison to the coarse RTG powder, under sink condition. The RTG-NS MAPs, containing a drug layer and a 'drug-free' supporting baseplate, have a drug content of 3.06 ± 0.15 mg/0.5 cm2 and demonstrated greater amount of drug delivered per unit area (∼0.52 mg/0.5 cm2) than Neupro® (∼0.20 mg/1 cm2) in an ex vivo Franz cell study using full-thickness neonatal porcine skin. The in vivo pharmacokinetic studies demonstrated that RTG-NS MAPs, though smaller (2 cm2 for dissolving MAPs and 6 cm2 for Neupro®), delivered drug levels comparable to Neupro®, indicating higher efficiency per unit area. This could potentially avoid unnecessarily high plasma levels after the next dose at 24 h, highlighting the benefits of dissolving MAPs over conventional transdermal patches in PD treatment.


Asunto(s)
Administración Cutánea , Agonistas de Dopamina , Nanopartículas , Absorción Cutánea , Tetrahidronaftalenos , Tiofenos , Parche Transdérmico , Animales , Tiofenos/administración & dosificación , Tiofenos/farmacocinética , Tiofenos/química , Tetrahidronaftalenos/administración & dosificación , Tetrahidronaftalenos/farmacocinética , Tetrahidronaftalenos/química , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacocinética , Agonistas de Dopamina/química , Nanopartículas/química , Porcinos , Suspensiones , Piel/metabolismo , Liberación de Fármacos , Masculino , Solubilidad , Tamaño de la Partícula
10.
Curr Drug Deliv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38867526

RESUMEN

INTRODUCTION: Desloratadine, a second-generation antihistaminic drug, is poorly watersoluble and requires amelioration of the dissolution rate to improve its pharmacokinetics properties. METHOD: This study investigated the impact of polymer, surfactant types, and concentration on the particle size, zeta potential, and dissolution efficiency of nanosuspensions formulated through the solvent antisolvent precipitation method. To optimize the delivery of Desloratadine nanosuspension, we used Minitab software and a 4-factor, 2-level full factorial design. Physicochemical properties and drug release studies were conducted to evaluate the suggested nanosuspension formulations. The optimization goals included minimizing particle size and zeta potential while maximizing dissolution efficiencies. RESULT: The selected optimal nanosuspension demonstrated favourable values, including a particle size of 478.63 ± 15.67 nm, a zeta potential of -36.24 ± 3.21 mV, and dissolution efficiencies in double distilled water and buffer of 90.29 ± 3.75 % and 93.70 ± 3.67 %, respectively. The optimized formulation was subjected to additional analysis using X-ray powder diffraction (XPRD), scanning and transmission electron microscopy (SEM and TEM), and Fourier-transform infrared spectroscopy (FTIR). CONCLUSION: The optimized nanosuspension formulation also underwent further studies under optimal lyophilization conditions, revealing the effectiveness of mannitol as a cryoprotectant at a concentration of 8%.

11.
Ann Pharm Fr ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945393

RESUMEN

INTRODUCTION: Nanosuspensions have emerged as a promising avenue in pharmaceutical innovation, particularly for enhancing the bioavailability of poorly soluble medications. This article explores the transformative potential of nanosuspensions, emphasizing the critical role of particle size reduction through nanonization techniques. With conventional approaches often falling short in addressing the bioavailability challenges of hydrophobic drugs, nanosuspensions offer multifaceted applications and distinctive advantages in drug delivery. METHODS: The study delves into various nanosuspension preparation techniques, including high-pressure homogenization, media milling, emulsification-solvent evaporation, precipitation, and supercritical fluid processes. Each method brings unique advantages and limitations, contributing to the expanding repertoire of nanosuspension formulation methods. The article emphasizes the necessity for meticulous planning, evaluation, and ongoing research across different drugs to optimize their use effectively. RESULTS: Nanosuspensions exhibit versatility in administration routes, spanning parenteral, peroral, ocular, and pulmonary pathways, making them applicable across diverse dosage forms. Current efforts are directed towards furthering their application in site-specific medication administration, indicating their potential in tailored therapeutic strategies. Nanosuspensions offer a promising solution for enhancing drug solubility and bioavailability, addressing the persistent challenge of poor solubility in pharmaceutical compounds. DISCUSSION: The significance of careful formulation and stabilization using polymers and surfactants is underscored, ensuring the efficacy and safety of nanosuspensions. By discussing the benefits, drawbacks, and nuances of each preparation technique, the article aims to simplify future research endeavors in the field of nanosuspensions. Additionally, a comprehensive overview of nanosuspensions, including their preparation methods, benefits, characterization, patents, marketed products, and intended uses, sheds light on this evolving domain in pharmaceutical sciences. CONCLUSION: Nanosuspensions represent a promising approach for overcoming bioavailability challenges associated with poorly soluble medications. The article highlights their transformative potential in pharmaceutical innovation, emphasizing the importance of continued research and optimization to harness their benefits effectively. Nanosuspensions offer a viable solution for enhancing drug solubility and bioavailability, with implications for improving therapeutic outcomes in various medical conditions.

12.
Neurosci Lett ; 834: 137844, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38821203

RESUMEN

Depression is a prevalent global health concern necessitating alternative approaches to conventional antidepressant medications due to its associated adverse effects. Nigella sativa (NS) is recognized for its potential as an antidepressant, offering a promising solution with fewer side effects. This study investigated the antidepressant efficacy of cyclodextrin-complexed lyophilized nanosuspension of NS oleoresin (NSOR) in a murine model of chronic unpredictable mild stress (CUMS)-induced depression. This study sought to evaluate and contrast the antidepressant potential of the nano-NSOR with that of the NS ethanolic extract (NSEE). The prepared nano-NSOR was characterized physicochemically and evaluated for in vitro drug release and in vivo antidepressant activity. The particle size of nano-NSOR was determined to be 164.6 nm. In vitro drug release studies suggested the higher drug release from nano-NSOR (90.15 % after 72 h) compared to the native NSOR (59.55 % after 72 h). Furthermore, nano-NSOR exhibited a more pronounced antidepressant effect than NSEE in the context of CUMS-induced depression. This study highlights a potential alternative for managing depression, addressing the need for improved antidepressant treatments with reduced side effects. These results suggest that nano-NSOR ameliorates CUMS-induced depression by modulating neurotransmitter levels, reducing inflammation, and enhancing neuroprotection.


Asunto(s)
Antidepresivos , Ciclodextrinas , Depresión , Nigella sativa , Extractos Vegetales , Semillas , Estrés Psicológico , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Semillas/química , Nigella sativa/química , Estrés Psicológico/tratamiento farmacológico , Masculino , Ciclodextrinas/química , Nanopartículas/química , Liofilización , Modelos Animales de Enfermedad , Suspensiones
13.
ACS Appl Mater Interfaces ; 16(21): 27040-27054, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743443

RESUMEN

Strong precorneal clearance mechanisms including reflex blink, constant tear drainage, and rapid mucus turnover constitute great challenges for eye drops for effective drug delivery to the ocular epithelium. In this study, cyclosporine A (CsA) for the treatment of dry eye disease (DED) was selected as the model drug. Two strategies, PEGylation for mucus penetration and cationization for potent cellular uptake, were combined to construct a novel CsA nanosuspension (NS@lipid-PEG/CKC) by coating nanoscale drug particles with a mixture of lipids, DSPE-PEG2000, and a cationic surfactant, cetalkonium chloride (CKC). NS@lipid-PEG/CKC with the mean size ∼173 nm and positive zeta potential ∼+40 mV showed promoted mucus penetration, good cytocompatibility, more cellular uptake, and prolonged precorneal retention without obvious ocular irritation. More importantly, NS@lipid-PEG/CKC recovered tear production and goblet cell density more efficiently than the commercial cationic nanoemulsion on a dry eye disease rat model. All results indicated that a combination of PEGylation and cationization might provide a promising strategy to coordinate mucus penetration and cellular uptake for enhanced drug delivery to the ocular epithelium for nanomedicine-based eye drops.


Asunto(s)
Ciclosporina , Síndromes de Ojo Seco , Fosfolípidos , Polietilenglicoles , Animales , Ciclosporina/química , Ciclosporina/farmacología , Ciclosporina/farmacocinética , Ciclosporina/administración & dosificación , Polietilenglicoles/química , Ratas , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/patología , Fosfolípidos/química , Ratas Sprague-Dawley , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Cationes/química , Soluciones Oftálmicas/química , Soluciones Oftálmicas/farmacología , Humanos , Masculino , Córnea/metabolismo , Córnea/efectos de los fármacos
14.
Artículo en Inglés | MEDLINE | ID: mdl-38748201

RESUMEN

Vaginal atrophy affects up to 57% of post-menopausal women, with symptoms ranging from vaginal burning to dysuria. Estradiol hormone replacement therapy may be prescribed to alleviate these symptoms, though many vaginal products have drawbacks including increased discharge and local tissue toxicity due to their hypertonic nature. Here, we describe the development and characterization of a Pluronic F127-coated estradiol nanosuspension (NS) formulation for improved vaginal estradiol delivery. We compare the pharmacokinetics to the clinical comparator vaginal cream (Estrace) and demonstrate increased delivery of estradiol to the vaginal tissue. We utilized ovariectomized (OVX) mice as a murine model of post-menopausal vaginal atrophy and demonstrated equivalent efficacy in vaginal re-epithelialization when dosed with either the estradiol NS or Estrace cream. Further, we demonstrate compatibility of the estradiol NS with vaginal bacteria in vitro. We demonstrate that a Pluronic F127-coated estradiol NS may be a viable option for the treatment of post-menopausal vaginal atrophy.

15.
Mol Pharm ; 21(6): 2813-2827, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38752564

RESUMEN

Psoriasis, affecting 2-3% of the global population, is a chronic inflammatory skin condition without a definitive cure. Current treatments focus on managing symptoms. Recognizing the need for innovative drug delivery methods to enhance patient adherence, this study explores a new approach using calcipotriol monohydrate (CPM), a primary topical treatment for psoriasis. Despite its effectiveness, CPM's therapeutic potential is often limited by factors like the greasiness of topical applications, poor skin permeability, low skin retention, and lack of controlled delivery. To overcome these challenges, the study introduces CPM in the form of nanosuspensions (NSs), characterized by an average particle size of 211 ± 2 nm. These CPM NSs are then incorporated into a trilayer dissolving microneedle patch (MAP) made from poly(vinylpyrrolidone) and w poly(vinyl alcohol) as needle arrays and prefrom 3D printed polylactic acid backing layer. This MAP features rapidly dissolving tips and exhibits good mechanical properties and insertion capability with delivery efficiency compared to the conventional Daivonex ointment. The effectiveness of this novel MAP was tested on Sprague-Dawley rats with imiquimod-induced psoriasis, demonstrating efficacy comparable to the marketed ointment. This innovative trilayer dissolving MAP represents a promising new local delivery system for calcipotriol, potentially revolutionizing psoriasis treatment by enhancing drug delivery and patient compliance.


Asunto(s)
Administración Cutánea , Calcitriol , Sistemas de Liberación de Medicamentos , Agujas , Psoriasis , Ratas Sprague-Dawley , Psoriasis/tratamiento farmacológico , Animales , Calcitriol/análogos & derivados , Calcitriol/administración & dosificación , Ratas , Sistemas de Liberación de Medicamentos/métodos , Absorción Cutánea/efectos de los fármacos , Piel/metabolismo , Piel/efectos de los fármacos , Piel/patología , Tamaño de la Partícula , Masculino , Nanopartículas/química , Imiquimod/administración & dosificación , Suspensiones , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/farmacocinética , Parche Transdérmico
16.
J Control Release ; 371: 101-110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782065

RESUMEN

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.


Asunto(s)
Sistemas de Liberación de Medicamentos , Geles , Poloxámero , Vagina , Femenino , Animales , Administración Intravaginal , Poloxámero/química , Vagina/efectos de los fármacos , Progesterona/administración & dosificación , Progesterona/química , Reología , Ratones , Cremas, Espumas y Geles Vaginales/administración & dosificación , Embarazo
17.
Int J Nanomedicine ; 19: 4061-4079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736651

RESUMEN

Purpose: Transdermal Drug Delivery System (TDDS) offers a promising alternative for delivering poorly soluble drugs, challenged by the stratum corneum's barrier effect, which restricts the pool of drug candidates suitable for TDDS. This study aims to establish a delivery platform specifically for highly lipophilic drugs requiring high doses (log P > 5, dose > 10 mg/kg/d), to improve their intradermal delivery and enhance solubility. Methods: Cannabidiol (CBD, log P = 5.91) served as the model drug. A CBD nanosuspension (CBD-NS) was prepared using a bottom-up method. The particle size, polydispersity index (PDI), zeta potential, and concentration of the CBD-NS were characterized. Subsequently, CBD-NS was incorporated into dissolving microneedles (DMNs) through a one-step manufacturing process. The intradermal dissolution abilities, physicochemical properties, mechanical strength, insertion depth, and release behavior of the DMNs were evaluated. Sprague-Dawley (SD) rats were utilized to assess the efficacy of the DMN patch in treating knee synovitis and to analyze its skin permeation kinetics and pharmacokinetic performance. Results: The CBD-NS, stabilized with Tween 80, exhibited a particle size of 166.83 ± 3.33 nm, a PDI of 0.21 ± 0.07, and a concentration of 46.11 ± 0.52 mg/mL. The DMN loaded with CBD-NS demonstrated favorable intradermal dissolution and mechanical properties. It effectively increased the delivery of CBD into the skin, extended the action's duration in vivo, and enhanced bioavailability. CBD-NS DMN exhibited superior therapeutic efficacy and safety in a rat model of knee synovitis, significantly inhibiting TNF-α and IL-1ß compared with the methotrexate subcutaneous injection method. Conclusion: NS technology effectively enhances the solubility of the poorly soluble drug CBD, while DMN facilitates penetration, extends the duration of action in vivo, and improves bioavailability. Furthermore, CBD has shown promising therapeutic outcomes in treating knee synovitis. This innovative drug delivery system is expected to offer a more efficient solution for the administration of highly lipophilic drugs akin to CBD, thereby facilitating high-dose administration.


Asunto(s)
Administración Cutánea , Cannabidiol , Agujas , Tamaño de la Partícula , Ratas Sprague-Dawley , Absorción Cutánea , Suspensiones , Animales , Cannabidiol/farmacocinética , Cannabidiol/administración & dosificación , Cannabidiol/química , Absorción Cutánea/efectos de los fármacos , Ratas , Suspensiones/química , Masculino , Piel/metabolismo , Piel/efectos de los fármacos , Solubilidad , Sistemas de Liberación de Medicamentos/métodos , Parche Transdérmico , Nanopartículas/química , Microinyecciones/métodos , Microinyecciones/instrumentación
18.
AAPS PharmSciTech ; 25(4): 75, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580793

RESUMEN

Minoxidil (MIN) is used topically to treat alopecia. However, its low absorption limits its use, warranting a new strategy to enhance its delivery into skin layers. The objective of this study was to evaluate the dermal delivery of MIN by utilizing dissolved microneedles (MNs) loaded with MIN nanosuspension (MIN-NS) for hair regrowth. MIN-NS was prepared by the solvent-antisolvent precipitation technique. The particle size of MIN-NS was 226.7 ± 9.3 nm with a polydispersity index of 0.29 ± 0.17 and a zeta potential of -29.97 ± 1.23 mV. An optimized formulation of MIN-NS was selected, freeze-dried, and loaded into MNs fabricated with sodium carboxymethyl cellulose (Na CMC) polymeric solutions (MIN-NS-loaded MNs). MNs were evaluated for morphology, dissolution rate, skin insertion, drug content, mechanical properties, ex vivo permeation, in vivo, and stability studies. MNs, prepared with 14% Na CMC, were able to withstand a compression force of 32 N for 30 s, penetrate Parafilm M® sheet at a depth of 374-504 µm, and dissolve completely in the skin within 30 min with MIN %recovery of 95.1 ± 6.5%. The release of MIN from MIN-NS-loaded MNs was controlled for 24 h. MIN-NS-loaded MNs were able to maintain their mechanical properties and chemical stability for 4 weeks, when kept at different storage conditions. The in vivo study of the freeze-dried MIN-NS and MIN-NS-loaded MNs proved hair regrowth on rat skin after 11 and 7 days, respectively. These results showed that MIN-NS-loaded MNs could potentially improve the dermal delivery of MIN through the skin to treat alopecia.


Asunto(s)
Minoxidil , Piel , Ratas , Animales , Administración Cutánea , Alopecia/tratamiento farmacológico , Cabello , Sistemas de Liberación de Medicamentos/métodos , Agujas
19.
Int J Pharm ; 656: 124085, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580073

RESUMEN

Chrysin is a flavonoid drug with numerous therapeutic activities. It suffers from low intestinal absorption owing to its hydrophobicity. Therefore, the aim of this study is to exploit the efficient technique of nanosuspension (NSP) to formulate chrysin-NSP coated with tannic acid (TA) to improve the solubility and anti-schizophrenic activity of chrysin. A 23 full factorial design was constructed where the independent factors were type of polymer, surfactant concentration (0.5 or 1 %) and the aqueous phase volume (5 or 15 mL), while the dependent responses were the particle size (PS) of the obtained formulation as well as the % chrysin dissolved after 2 h (Q2h). The optimum formulation (NSP-4) composed of 1 % PEG 400 and 1 % Cremophor RH40 in 15 mL aqueous phase. It achieved a PS and Q2h values of 108.00 nm and 38.77 %, respectively. NSP-4 was then coated with TA (TA-coated NSP-4) for further enhancement of chrysin solubility. TA-coated NSP-4 revealed PS and zeta potential values of 150 ± 14 nm and -32.54 ± 2.45 mV, respectively. After 6 h, chrysin dissolved % were 53.97 and 80.22 for uncoated NSP-4 and TA-coated NSP-4, respectively, compared with only 9.47 for free chrysin. The developed formulations and free chrysin were assessed regarding their effect on schizophrenia induced in mice by cuprizone (CPZ). Treatment with the developed formulations and free chrysin ameliorated demyelination and behavioral deficit induced by CPZ via elevating MBP and PI3K/PKC activities as well as reducing GFAP expression levels. The developed formulations and free chrysin inhibited Galactin-3 and TGF-ß expressions and stimulated GST antioxidant enzyme. Furthermore, they maintained the balances in glutamatergic and dopaminergic neurotransmission via modulation on neuregulin-1 and alleviated nuclear pyknosis and degeneration in the neurons. The order of activity was: TA-coated NSP-4 > NSP-4 > free chrysin.


Asunto(s)
Flavonoides , Nanopartículas , Polifenoles , Esquizofrenia , Solubilidad , Taninos , Animales , Flavonoides/administración & dosificación , Flavonoides/farmacología , Flavonoides/química , Taninos/química , Taninos/administración & dosificación , Taninos/farmacología , Ratones , Masculino , Esquizofrenia/tratamiento farmacológico , Administración Oral , Tamaño de la Partícula , Suspensiones , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación
20.
Eur J Pharm Biopharm ; 199: 114279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588829

RESUMEN

Our study aimed to develop a virucidal throat spray using bioactive compounds and excipients, focusing on the preparation of Curcumin (CUR) in a self-nano emulsifying drug delivery system (SNEDDS). Two molecular docking studies against SARS-CoV-2 targets guided the selection of proper oil, surfactant, co-surfactant, and natural bioactive that would maximize the antiviral activity of the throat spray. Two self-nanoemulsifying formulas that were diluted with different vehicles to prepare eight CUR-loaded SNESNS (self-nanoemulsifying self-nanosuspension) formulas. In vitro characterization studies and in vitro anti-SARS-CoV-2 effect revealed that the optimal formula, consisted of 20 % Anise oil, 70 % Tween 80, 10 % PEG 400, and 0.1 %w/w CUR, diluted with DEAE-Dx. Preclinical toxicity tests on male rats confirmed the safety of a mild throat spray dose (5 µg/mL CUR). In a rat model of acute pharyngitis induced by ammonia, post-treatment with the optimal formula of CUR loaded SNESNS for one week significantly reduced elevated proinflammatory markers (TNF-α, IL6, MCP1, and IL8). In conclusion, our CUR-loaded SNESNS formula, at 5 µg/mL concentration, shows promising effect as a prophylactic throat spray against SARS-CoV-2 and as a treatment for pharyngitis.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Excipientes , Faringitis , SARS-CoV-2 , Animales , Faringitis/tratamiento farmacológico , Excipientes/química , Ratas , Masculino , Antivirales/administración & dosificación , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , COVID-19/prevención & control , Curcumina/administración & dosificación , Curcumina/farmacología , Humanos , Simulación del Acoplamiento Molecular , Ratas Sprague-Dawley , Sistema de Administración de Fármacos con Nanopartículas/química , Chlorocebus aethiops
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA