RESUMEN
Biotite, an iron-rich mineral belonging to the trioctahedral mica group, is a naturally abundant layered material (LM) exhibiting attractive electronic properties for application in nanodevices. Biotite stands out as a non-degradable LM under ambient conditions, featuring high-quality basal cleavage-a significant advantage for van der Waals heterostructure (vdWH) applications. In this work, we present the micro-mechanical exfoliation of biotite down to monolayers (1Ls), yielding ultrathin flakes with large areas and atomically flat surfaces. To identify and characterize the mineral, we conducted a multi-elemental analysis of biotite using energy-dispersive spectroscopy mapping. Additionally, synchrotron x-ray fluorescence and infrared nano-spectroscopy were employed to probe its iron content and vibrational signature in few-layer form, respectively, with sensitivity to the layer number. We have also observed good morphological and structural stability in time (up to 12 months) and no important changes in their physical properties after thermal annealing processes in ultrathin biotite flakes. Conductive atomic force microscopy evaluated its electrical capacity, revealing an electrical breakdown strength of approximately 1 V nm-1. Finally, we explore the use of biotite as a substrate and encapsulating LM in vdWH applications. We have performed optical and magneto-optical measurements at low temperatures. We find that ultrathin biotite flakes work as a good substrate for 1L-MoSe2, comparable to hexagonal boron nitride flakes, but it induces a small change of the 1L-MoSe2g-factor values, most likely due to natural impurities on its crystal structure. Furthermore, our results show that biotite flakes are useful systems to protect sensitive LMs such as black phosphorus from degradation for up to 60 days in ambient air. Our study introduces biotite as a promising, cost-effective LM for the advancement of future ultrathin nanotechnologies.
RESUMEN
In this communication, the design and fabrication of optical active metamaterials were developed by the incorporation of graphene and joining it to different substrates with variable spectroscopical properties. It focuses on how graphene and its derivatives could generate varied optical setups and materials considering modified and enhanced optics within substrates and surfaces. In this manner, it is discussed how light could be tuned and modified along its path from confined nano-patterned surfaces or through a modified micro-lens. In addition to these optical properties generated from the physical interaction of light, it should be added that the non-classical light pathways and quantum phenomena could participate. In this way, graphene and related carbon-based materials with particular properties, such as highly condensed electronics, pseudo-electromagnetic properties, and quantum and luminescent properties, could be incorporated. Therefore, the modified substrates could be switched by photo-stimulation with variable responses depending on the nature of the material constitution. Therefore, the optical properties of graphene and its derivatives are discussed in these types of metasurfaces with targeted optical active properties, such as within the UV, IR, and terahertz wavelength intervals, along with their further properties and respective potential applications.
RESUMEN
This communication aims at discussing strategies based on developments from nanotechnology focused on the next generation of sequencing (NGS). In this regard, it should be noted that even in the advanced current situation of many techniques and methods accompanied with developments of technology, there are still existing challenges and needs focused on real samples and low concentrations of genomic materials. The approaches discussed/described adopt spectroscopical techniques and new optical setups. PCR bases are introduced to understand the role of non-covalent interactions by discussing about Nobel prizes related to genomic material detection. The review also discusses colorimetric methods, polymeric transducers, fluorescence detection methods, enhanced plasmonic techniques such as metal-enhanced fluorescence (MEF), semiconductors, and developments in metamaterials. In addition, nano-optics, challenges linked to signal transductions, and how the limitations reported in each technique could be overcome are considered in real samples. Accordingly, this study shows developments where optical active nanoplatforms generate signal detection and transduction with enhanced performances and, in many cases, enhanced signaling from single double-stranded deoxyribonucleic acid (DNA) interactions. Future perspectives on miniaturized instrumentation, chips, and devices aimed at detecting genomic material are analyzed. However, the main concept in this report derives from gained insights into nanochemistry and nano-optics. Such concepts could be incorporated into other higher-sized substrates and experimental and optical setups.
Asunto(s)
Nanotecnología , Óptica y Fotónica , Nanotecnología/métodos , Metales , Secuenciación de Nucleótidos de Alto Rendimiento , ADN de Cadena SimpleRESUMEN
We developed a microfluidic synthesis to grow GdF3:Eu theranostic scintillating nanoparticles to simultaneously monitor the X-ray dose delivered to tumors during treatments with X-ray activated photodynamic therapy (X-PDT). The flow reaction was optimized to enhance scintillation emission from the Eu3+ ions. The as-prepared â¼15 nm rhombohedral-shaped nanoparticles self-assembled into â¼100 nm mesoporous flower-like nanostructures, but the rhombohedral units remained intact and the scintillation spectra unaltered. The conjugation of the ScNPs with multilayers of methylene blue (MB) in a core-shell structure (GdF@MB) resulted in enhanced singlet oxygen (1O2) generation under X-ray irradiation, with maximum 1O2 production for nanoparticles with 4 MB layers (GdF@4MB). High 1O2 yield was further evidenced in cytotoxicity assays, demonstrating complete cell death only for the association of ScNPs with MB and X-rays. Because the scintillating Eu3+ emission at 694 nm is within the therapeutic window and was only partially absorbed by the MB molecules, it was explored for getting in vivo dosimetric information. Using porcine skin and fat to simulate the optical and radiological properties of the human tissues, we showed that the scintillation light can be detected for a tissue layer of â¼16 mm, thick enough to be employed in radiotherapy treatments of breast cancers, for instance. Therefore, the GdF3:Eu ScNPs and the GdF@4MB nanoconjugates are strong candidates for treating cancer with X-PDT while monitoring the treatment and the radiation dose delivered, opening new avenues to develop a next-generation modality of real-time in vivo dosimetry.
Asunto(s)
Materiales Biocompatibles/síntesis química , Dispositivos Laboratorio en un Chip , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Nanomedicina Teranóstica , Materiales Biocompatibles/química , Humanos , Rayos Infrarrojos , Ensayo de Materiales , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Rayos XRESUMEN
Gold nanoparticles (AuNP) modified with antibody and rifampicin (RP) were tested against Mycobacterium bovis Bacillus Calmette-Guérin (BCG), which previously generated in vitro infection of macrophages from mice. Such a drug delivery system works as nanocarrier for RP and presented lower toxicity for macrophages cells than each separated component. Surface-enhanced Raman scattering (SERS) spectroscopy and fluorescence microscopy were used as analytical tools for the characterization of the internalization of gold nanocarriers into macrophage cells. The effective antibiotic action of RP, when combined with gold nanocarrier, was confirmed by dead-live assay of BCG bacteria lysed from macrophages after incubation. Such results indicate the delivery of RP to BCG bacteria, which were infecting macrophages, occurred with remarkable efficiency. It was rationalized based on the strategy used for the adsorption of antibody molecules on gold surface.
Asunto(s)
Nanopartículas del Metal , Mycobacterium bovis , Animales , Sistemas de Liberación de Medicamentos , Oro , Macrófagos , Ratones , Espectrometría RamanRESUMEN
Surface-enhanced Raman scattering (SERS) spectroscopy was used in the investigation of the adsorption of folic acid (FA) on the surface of gold nanoparticles (AuNPs) in the absence and presence of surface modifiers hydrochloride acid (HCl) and 1-mercaptoethanol (ME). The proposal for the chemical interactions of FA with the metallic surface was based on vibrational assignment supported by Density Functional Theory (DFT) calculations. In the absence of surface modifiers, FA interacts with the gold surface through the pteridine moiety in a tilted geometry. In the presence of ME, the molecule of FA is anchored through hydrogen bonds with the surface modifier. The presence of HCl induced ion-pair interactions involving chloride ions, adsorbed on gold surfaces, and both the nitrogen N1 of the pteridine ring and the γ-carboxylic acid of the glutamic acid moiety. In this condition, keto-enol equilibrium can be evidenced by a remarkable enhancement of marker bands in the SERS spectra.
RESUMEN
In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that â¼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.
Asunto(s)
Antineoplásicos Fitogénicos/síntesis química , Apoptosis/efectos de los fármacos , Citotoxinas/síntesis química , Nanosferas/química , Paclitaxel/síntesis química , Aceites de Plantas/síntesis química , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citotoxinas/farmacocinética , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Células HeLa , Humanos , Mentha piperita , Paclitaxel/farmacocinética , Aceites de Plantas/farmacocinética , Polietilenglicoles/síntesis química , Polietilenglicoles/farmacocinética , Tensoactivos/síntesis química , Tensoactivos/farmacocinética , Vitamina E/síntesis química , Vitamina E/farmacocinéticaRESUMEN
Actualmente las enfermedades cardiovasculares representan la principal causa de morbimortalidad en el mundo; la aplicación de la nanotecnología es una gran promesa en su prevención y tratamiento. Se están desarrollando nanodispositivos para la liberación dirigida y controlada de medicamentos en sitios específicos en el organismo, por ejemplo, en células, tejidos, vasos sanguíneos y el corazón, así como para el diagnóstico, detección temprana de enfermedades cardiovasculares y tratamiento individualizado de pacientes. Otra posible aplicación de los nanodispositivos es la liberación de fármacos para corregir el mal acoplamiento de proteínas defectuosas. Con potentes superefectos, las nanopartículas deberán ser capaces de provocar efectos terapéuticos a bajas dosis en periodos prolongados. La fabricación de nanodispositivos y nanoacarreadores deberá llevarse a cabo con un enfoque integral que tome en cuenta las propiedades generales, con la finalidad de evaluar la biocompatibilidad y, en consecuencia, evitar efectos adversos y tóxicos. La investigación intensificada en este campo ayudará a reducir significativamente la morbimortalidad provocada por las enfermedades cardiovasculares.Currently, cardiovascular disease represents the main cause of morbidity and mortality worldwide; the application of nanotechnology holds great promise for its prevention and treatment. Nanodevices ("smart drugs") are currently being developed for directed and controlled delivery of drugs to specific sites in the body, such as cells, tissues, blood vessels and the heart, as well as for diagnosis and early detection of cardiovascular conditions and patient-individualized treatment. Another application of nanodevices is the delivery of drugs to correct defective protein bad coupling or binding. With potent super-effects, nanoparticles should be able to elicit therapeutic effects at lower doses and prolonged periods. The manufacture of nanodevices and nanocarriers should be with a comprehensive approach that takes general properties into account in order to assess for biocompatibility and, therefore, avoid adverse and toxic effects. Intensified research in this field will help to significantly reduce morbidity and mortality caused by cardiovascular disease.
Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Nanocápsulas , HumanosRESUMEN
Nanofluidics based on nanoscopic porous structures has emerged as the next evolutionary milestone in the construction of versatile nanodevices with unprecedented applications. However, the straightforward development of nanofluidically interconnected systems is crucial for the production of practical devices. Here, we demonstrate that spontaneous infiltration into supramolecularly templated mesoporous oxide films at the edge of a sessile drop in open air can be used to connect pairs of landmarks. The liquids from the drops can then join through the nanoporous network to guide a localized chemical reaction at the nanofluid-front interface. This method, here named "open-pit" nanofluidics, allows mixing reagents from nanofluidically connected droplet reservoirs that can be used as reactors to conduct reactions and precipitation processes. From the fundamental point of view, the work contributes to unveiling subtle phenomena during spontaneous infiltration of fluids in bodies with nanoscale dimensions such as the front broadening effect and the oscillatory behavior of the infiltration-evaporation front. The approach has distinctive advantages such as easy fabrication, low cost, and facility of scaling up for future development of ultrasensitive detection, controlled nanomaterial synthesis, and novel patterning methods.