Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(17): 21895-21904, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636081

RESUMEN

There is a growing interest in creating cost-effective catalysts for efficient electrochemical CO2 reduction to address pressing environmental issues and produce valuable products. A bimetallic ZnBi catalyst that enhances catalytic activity and stability toward the electrochemical reduction of CO2 is designed. It is based on bismuth nanodendrites grown using a facile, scalable, and low-cost method. The results have shown that the incorporation of bismuth can decrease the charge transfer resistance and facilitate CO2 reduction toward the formation of CO and formate. It was revealed that the ZnBi catalyst exhibited higher catalytic activity compared with that of the pure Zn catalyst for CO2 reduction, with a lower onset potential [-0.75 V vs a reversible hydrogen electrode (RHE) compared with -0.85 V vs RHE for Zn]. In situ electrochemical attenuated total internal reflection Fourier transform infrared spectroscopy was employed to study the reaction mechanism, showing the formation of CO and formate through the adsorbed *COO- intermediates. This study has demonstrated a new approach for the feasible synthesis of high-performance catalysts for large-scale electrochemical CO2 reduction.

2.
Nanotechnology ; 35(28)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522104

RESUMEN

Surface enhanced Raman spectroscopy (SERS) is a powerful analytical technique that has found application in the trace detection of a wide range of contaminants. In this paper, we report on the fabrication of 2D silver nanodendrites, on silicon chips, synthesized by electrochemical reduction of AgNO3at microelectrodes. The formation of nanodendrites is tentatively explained in terms of electromigration and diffusion of silver ions. Electrochemical characterization suggests that the nanodendrites do not stay electrically connected to the microelectrode. The substrates show SERS activity with an enhancement factor on the order of 106. Density functional theory simulations were carried out to investigate the suitability of the fabricated substrate for pesticide monitoring. These substrates can be functionalized with cyclodextrin macro molecules to help with the detection of molecules with low affinity with silver surfaces. A proof of concept is demonstrated with the detection of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA).

3.
Adv Mater ; 36(24): e2312778, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421936

RESUMEN

Hydrogenation of biomass-derived chemicals is of interest for the production of biofuels and valorized chemicals. Thermochemical processes for biomass reduction typically employ hydrogen as the reductant at elevated temperatures and pressures. Here, the authors investigate the direct electrified reduction of 5-hydroxymethylfurfural (HMF) to a precursor to bio-polymers, 2,5-bis(hydroxymethyl)furan (BHMF). Noting a limited current density in prior reports of this transformation, a hybrid catalyst consisting of ternary metal nanodendrites mixed with a cationic ionomer, the latter purposed to increase local pH and facilitate surface proton diffusion, is investigated. This approach, when implemented using Ga-doped Ag-Cu electrocatalysts designed for p-d orbital hybridization, steered selectivity to BHMF, achieving a faradaic efficiency (FE) of 58% at 100 mA cm-2 and a production rate of 1 mmol cm-2 h-1, the latter a doubling in rate compared to the best prior reports.

4.
Bioelectrochemistry ; 157: 108639, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38199185

RESUMEN

Recently, high-entropy alloys have superior physicochemical properties as compared to conventional alloys for their glamorous "cocktail effect". Nevertheless, they are scarcely applied to electrochemical immunoassays until now. Herein, uniform PtRhMoCoFe high-entropy alloyed nanodendrites (HEANDs) were synthesized by a wet-chemical co-reduction method, where glucose and oleylamine behaved as the co-reducing agents. Then, a series of characterizations were conducted to illustrate the synergistic effect among multiple metals and fascinating structural characteristics of PtRhMoCoFe HEANDs. The obtained high-entropy alloy was adopted to build a electrochemical label-free biosensor for ultrasensitive bioassay of biomarker cTnI. In the optimized analytical system, the resultant sensor exhibited a dynamic linear range of 0.0001-200 ng mL-1 and a low detection limit of 0.0095 pg mL-1 (S/N = 3). Eventually, this sensing platform was further explored in serum samples with satisfied recovery (102.0 %). This research renders some constructive insights for synthesis of high-entropy alloys and their expanded applications in bioassays and bio-devices.


Asunto(s)
Aleaciones , Técnicas Biosensibles , Entropía , Aleaciones/química , Biomarcadores , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
5.
Small ; 20(25): e2307328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196157

RESUMEN

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

6.
Angew Chem Int Ed Engl ; 63(7): e202317987, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38152839

RESUMEN

Platinum metal (PtM, M=Ni, Fe, Co) alloys catalysts show high oxygen reduction reaction (ORR) activity due to their well-known strain and ligand effects. However, these PtM alloys usually suffer from a deficient ORR durability in acidic environment as the alloyed metal is prone to be dissolved due to its high electronegativity. Herein, we report a new class of PtMn alloy nanodendrite catalyst with low-electronegativity Mn-contraction for boosting the oxygen reduction durability of fuel cells. The moderate strain in PtMn, induced by Mn contraction, yields optimal oxygen reduction activity at 0.53 A mg-1 at 0.9 V versus reversible hydrogen electrode (RHE). Most importantly, we show that relative to well-known high-electronegativity Ni-based Pt alloy counterpart, the PtMn nanodendrite catalyst experiences less transition metals' dissolution in acidic solution and achieves an outstanding mass activity retention of 96 % after 10,000 degradation cycles. Density functional theory calculation reveals that PtMn alloys are thermodynamically more stable than PtNi alloys in terms of formation enthalpy and cohesive energy. The PtMn nanodendrite-based membrane electrode assembly delivers an outstanding peak power density of 1.36 W cm-2 at a low Pt loading and high-performance retention over 50 h operations at 0.6 V in H2 -O2 hydrogen fuel cells.

7.
J Colloid Interface Sci ; 658: 879-888, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157612

RESUMEN

Two-dimensional (2D) materials have garnered significant attention due to their distinctive physicochemical properties, with 2D noble metal nanodendrites being particularly intriguing in terms of their properties and functional prospects. However, the synthesis of ultrathin and highly branched gold nanodendrites (AuNDs) still poses challenges. In this study, we successfully achieved the synthesis of highly branched 2D AuNDs with a thickness of 4 nm by employing a carboxyl-functionalized C22-tailed surfactant along with the co-directing agent 2-mercaptonicotinic acid (2-MNA). The careful selection of specific thiol molecules such as 2-MNA is crucial for controlling the degree of branching and promoting the formation of ultrathin nanodendrites. Furthermore, we extended this method to synthesize alloy nanodendrites (AuAg NDs and AuCoAg NDs) using a similar approach. Due to their highly branched and ultrathin two-dimensional morphology, these prepared AuNDs exhibit excellent catalytic performance in the model reaction for 4-NP reduction. This thiol-induced synthesis strategy for AuNDs opens up new possibilities for designing other Au nanomaterials with an ultrathin morphology/structure.

8.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570580

RESUMEN

In this study, the iridium nanodendrites (Ir NDs) and antimony tin oxide (ATO)-supported Ir NDs (Ir ND/ATO) were prepared by a surfactant-mediated method to investigate the effect of ATO support and evaluate the electrocatalytic activity for the oxygen evolution reaction (OER). The nano-branched Ir ND structures were successfully prepared alone or supported on ATO. The Ir NDs exhibited major diffraction peaks of the fcc Ir metal, though the Ir NDs consisted of metallic Ir as well as Ir oxides. Among the Ir ND samples, Ir ND2 showed the highest mass-based OER catalytic activity (116 mA/mg at 1.8 V), while it suffered from high degradation in activity after a long-term test. On the other hand, Ir ND2/ATO had OER activity of 798 mA/mg, and this activity remained >99% after 100 cycles of LSV and the charge transfer resistance increased by less than 3 ohm. The enhanced durability of the OER mass activities of Ir ND2/ATO catalysts over Ir NDs and Ir black could be attributed to the small crystallite size of Ir and the increase in the ratio of Ir (III) to Ir (IV), improving the interactions between the Ir NDs and the ATO support.

9.
J Funct Biomater ; 14(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37367289

RESUMEN

Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing Moringa oleifera leaf extract. Phytoextract provides metabolites, serving as reducing and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and ~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain their physicochemical properties; the surface was distinguished by functional groups related to polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanostructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic reagent 3,3',5,5'-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degradation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs exhibited superior antibacterial properties against Gram-negative E. coli compared to Gram-positive S. aureus, as evidenced by the calculated zone of inhibition. These findings highlight the potential of the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape, compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis of such unique nanostructures holds promise for various applications and further investigations in diverse sectors, including chemical and biomedical fields.

10.
Ultrason Sonochem ; 98: 106494, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356216

RESUMEN

The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.

11.
J Nanobiotechnology ; 21(1): 151, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161467

RESUMEN

BACKGROUND: Photothermal therapy (PTT) in the second near-infrared (NIR-II) window has attracted extensive attention due to the benefits in high maximum permissible exposure and penetration depth. Current photothermal agents generally show a broadband absorption accompanied by a gradual attenuation of absorption in the NIR-II window, leading to poor effect of PTT. It remains a great challenge to gain photothermal agents with strong and characteristic absorption in NIR-II regions. To overcome this problem, based on carbon dots (CDs)-mediated growth strategy, we proposed a simple and feasible approach to prepare plasmonic gold nanodendrites (AuNDs) with NIR-II absorption to enhance the therapeutic effect of PTT. RESULTS: By rationally regulating the size and branch length of AuNDs, the AuNDs exhibited a broadband absorption from 300 to 1350 nm, with two characteristic absorption peaks located at 1077 and 1265 nm. The AuNDs demonstrated desired optical photothermal conversion efficiency (38.0%), which was further applied in NIR-II photoacoustic imaging (PAI) and PTT in human colon cancer cells (HCT 116)-tumor-bearing mice model. The tumor cells could be effectively eliminated in vivo under 1064 nm laser irradiation by the guidance of PAI. CONCLUSIONS: We reported a simple but powerful synthetic method to obtain the unique AuNDs with strong and characteristic absorption peaks in the NIR-II window. This study provides a promising solution to tuning the growth of nanoparticles for bioimaging and phototherapy in the NIR-II window.


Asunto(s)
Neoplasias del Colon , Terapia Fototérmica , Humanos , Animales , Ratones , Fototerapia , Carbono , Neoplasias del Colon/terapia , Oro
12.
Small ; 19(26): e2208077, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36960487

RESUMEN

Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3  NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS4 2- into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm-2 (η10 ) in 0.5 m sulfuric acid (H2 SO4 ) and 1 m potassium hydroxide (KOH) electrolyte are -11.5 and -16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (-20.2 mV and -30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+ ) to hydrogen (H2 ). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.

13.
Nano Lett ; 23(3): 1085-1092, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36649599

RESUMEN

Curved ultrathin PtPd nanodendrites (CNDs) with long-range compressive strain and highly branched feature are first prepared by a functional surfactant-induced strategy. Precise synthesis realized the construction of both curved and flat PtPd nanodendrites (NDs) with the same atomic ratio, which contributed to exploration of the strain effect on electrocatalytic performance alone. Abundant evidence is provided to confirm that the long-range compressive strain in curved PtPd architectures can effectively tailor the local coordination environment of active sites, lower the position of the d-band center, weaken the adsorption energy of the intermediates (e.g., H* and CO*), and ultimately increase their intrinsic activity. The density functional theory (DFT) calculations further reveal that the introduction of compressive strain weakens the Gibbs free-energy of the intermediate (ΔGH*), which is favorable for accelerating the hydrogen evolution reaction (HER) kinetics. A similar enhanced electrocatalytic performance can also be found in the methanol oxidation reaction (MOR).

14.
Biosensors (Basel) ; 12(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36551029

RESUMEN

Metallic dendrites, a class of three-dimensional nanostructured materials, have drawn a lot of interests in the recent years because of their interesting hierarchical structures and distinctive features. They are a hierarchical self-assembled array of primary, secondary, and terminal branches with a plethora of pointed ends, ridges, and edges. These features provide them with larger active surface areas. Due to their enormous active areas, the catalytic activity and conductivity of these nanostructures are higher as compared to other nanomaterials; therefore, they are increasingly used in the fabrication of sensors. This review begins with the properties and various synthetic approaches of nanodendrites. The primary goal of this review is to summarize various nanodendrites-engineered biosensors for monitoring of small molecules, macromolecules, metal ions, and cells in a wide variety of real matrices. Finally, to enlighten future research, the limitations and future potential of these newly discovered materials are discussed.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Técnicas Biosensibles/métodos , Dendritas
15.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499359

RESUMEN

Direct alcohol fuel cells are deemed as green and sustainable energy resources; however, CO-poisoning of Pt-based catalysts is a critical barrier to their commercialization. Thus, investigation of the electrochemical CO oxidation activity (COOxid) of Pt-based catalyst over pH ranges as a function of Pt-shape is necessary and is not yet reported. Herein, porous Pt nanodendrites (Pt NDs) were synthesized via the ultrasonic irradiation method, and its CO oxidation performance was benchmarked in different electrolytes relative to 1-D Pt chains nanostructure (Pt NCs) and commercial Pt/C catalyst under the same condition. This is a trial to confirm the effect of the size and shape of Pt as well as the pH of electrolytes on the COOxid. The COOxid activity and durability of Pt NDs are substantially superior to Pt NCs and Pt/C in HClO4, KOH, and NaHCO3 electrolytes, respectively, owing to the porous branched structure with a high surface area, which maximizes Pt utilization. Notably, the COOxid performance of Pt NPs in HClO4 is higher than that in NaHCO3, and KOH under the same reaction conditions. This study may open the way for understanding the COOxid activities of Pt-based catalysts and avoiding CO-poisoning in fuel cells.


Asunto(s)
Medicina , Nanoestructuras , Electrólitos , Oxidación-Reducción , Tomografía de Emisión de Positrones
16.
Biosens Bioelectron ; 215: 114552, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850039

RESUMEN

MicroRNA (miRNA) is a new class of tumor biomarkers in human body for early diagnosis and therapy of cancers, whose detection has scientific significance and potential applications. Herein, a sensitive heterostructured BiVO4/CoPi photoelectrochemical (PEC) biosensor was established for sensing miRNA 141 with assistance of home-synthesized AuPt nanodendrites (NDs) as nanozyme. Specifically, the BiVO4/CoPi heterostructures displayed rough worm-like internetworks, as characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In parallel, the PEC and UV-vis diffuse reflectance spectroscopy tests confirmed their excellent optical property, combined by discussing the interfacial electron transfer mechanism. Additionally, the AuPt NDs displayed superior peroxidase-like property in the presence of H2O2 as identified by benchmarked tetramethylbenzidine (TMB) oxidation, coupled by showing remarkable catalysis for 3-amino-9-ethylcarbazole (AEC) oxidation to form biocatalytic precipitation (BCP). Integrated by a cyclic enzyme strategy, the developed PEC biosensor exhibited a wider linear range of 5 fM ∼1 pM and a lower limit of detection (LOD) as low as 0.17 fM (S/N = 3). This work provides some valuable insights for sensitive analysis of tumor-associated miRNA in clinic.


Asunto(s)
Técnicas Biosensibles , MicroARNs , Humanos , Peróxido de Hidrógeno , Límite de Detección
17.
Nanotechnology ; 33(38)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35700703

RESUMEN

In the present work we report a simple, fast, reproducible and cheap methodology for surface enhanced Raman spectroscopy (SERS) substrate fabrication of silver dendritic nanostructures (prepared by electrodeposition) decorated with gold nanospheres by electrophoretic deposition. This is the first report where a metal dendritic nanostructure has been decorated with another type of metal nanoparticles by this technique. The decorated nanostructures were used directly as SERS substrate using 4-aminothiophenol (4-ATP) as analyte. The objective of the decoration is to create more hot-spots in order to detect the analyte in a lower concentration. Decorated nanodendrites had a detection limit one million times lower than bare silver nanodendrites and all the substrates showed an increase in the Raman intensity at concentrations below 1 nM; because this concentration corresponds to the threshold for the formation of a monolayer resulting in a triple mechanism of intensity increase, namely electric field, chemical factor and hot-spots. 4-ATP was detected in attomolar concentration, which is below 1 ppq, corresponding to an analytical enhancement factor in the order of 1015.

18.
Small ; 18(22): e2201633, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35499192

RESUMEN

Metallic bismuth (Bi) holds great promise in efficient conversion of carbon dioxide (CO2 ) into formate, yet the complicated synthetic routes and unobtrusive performance hinder the practical application. Herein, a facile galvanic-cell deposition method is proposed for the rapid and one-step synthesis of Bi nanodendrites. Compared to the traditional deposition method, it is found that the special galvanic-cell configuration can promote the exposure of low-angle grain boundaries. X-ray absorption spectroscopy, in situ characterizations and theoretical calculations indicate the electronical structures can be greatly tailored by the grain boundaries, which can facilitate the CO2 adsorption and intermediate formation. Consequently, the grain boundary-enriched Bi nanodendrites exhibit a high selectivity toward formate with an impressively high production rate of 557.2 µmol h-1 cm-2 at -0.94 V versus reversible hydrogen electrode, which outperforms most of the state-of-the-art Bi-based electrocatalysts with longer synthesis time. This work provides a straightforward method for rapidly fabricating active Bi electrocatalysts, and explicitly reveals the critical effect of grain boundary in Bi nanostructures on CO2 reduction.

19.
Bioelectrochemistry ; 145: 108080, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35131668

RESUMEN

A sandwich-type electrochemical immunosensor was developed using PdAg nanodendrites modified CoFe prussian blue analog (PdAg NDs/CoFe PBA) as the signal label for the alpha-fetoprotein (AFP) detection. The novel hollow porous CoFe PBA with KCoFe phase was synthesized via self-template epitaxial growth strategy. Benefiting from the filling of K ions and the hollow porous structure, the electron transfer rate and the mass transfer rate of CoFe PBA were improved, further enhancing the catalytic capacity. In addition, the special dendritic morphology of PdAg NDs can maximize the proportion of catalytic active sites, and stable Pd-N and Ag-N bonds can further fix more immune molecules to increase the sensitivity of electrochemical immunosensors. Under optimized parameters, the fabricated immunosensor demonstrated a wide linear range detection from 100.0 fg mL-1 to 200.0 ng mL-1, and a low detection limit of 18.6 fg mL-1. Simultaneously, the immunosensor with acceptable reproducibility, specificity, stability and exhibited satisfactory performance in human serum analysis. This work provides a new line for the detection of other tumor markers, which means that it has great application potential in immune analysis.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Técnicas Electroquímicas , Ferrocianuros , Oro/química , Humanos , Inmunoensayo , Límite de Detección , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , alfa-Fetoproteínas/análisis
20.
Mikrochim Acta ; 189(3): 110, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35178584

RESUMEN

A new label-free electrochemical immunosensor was constructed for quantitative detection of procalcitonin (PCT), by employing AuPtCu nanodendrites (AuPtCu NDs, prepared by a one-pot solvothermal method) and graphene-wrapped Co nanoparticles encapsulated in 3D N-doped carbon nanobrushes (G-Co@ NCNBs), obtained by self-catalyzed chemical vapor deposition as immune-sensing platform. Impressively, the home-made nanocomposite enlarged the highly accessible active sites and promoted the mass/electron transport, in turn showing the efficient synergistic catalysis towards H2O2 reduction, combined by greatly increasing the loading capacity of the PCT antibody (Ab). The as-constructed sensor displayed a dynamic linear range of 0.0001 ~ 100 ng mL-1 along with an ultra-low limit of detection (LOD = 0.011 pg mL-1, S/N = 3) and was further explored for determination of PCT in a diluted serum sample with acceptable results. The sensor provides some valuable guidelines for bioassay and early diagnosis of sepsis.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Carbono , Técnicas Electroquímicas/métodos , Oro/química , Grafito/química , Peróxido de Hidrógeno , Inmunoensayo/métodos , Límite de Detección , Nanopartículas del Metal/química , Polipéptido alfa Relacionado con Calcitonina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA