Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Intervalo de año de publicación
1.
Curr Top Med Chem ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108107

RESUMEN

BACKGROUND: Self-emulsifying nano-phase of traditional Chinese medicine are a research hotspot. Xiao-Chai-Hu decoction is a commonly used compound decoction in clinical practice, which is of great research significance. The aim of this study was to isolate and characterize the self-emulsifying nano-phase and other phases of Xiao-Chai-Hu decoction, and to study the effects of each phase on acute liver injury. METHODS: The liquid medicine was prepared employing centrifugation followed by dialysis. Single- factor investigation methodology was utilized to optimize the preparation parameters for both phases. Characterization of the formulated phase involved analyses such as surface morphology assessment, measurement of nanoparticle size and Zeta potential using an analyzer, observation of the Tyndall effect, conducting diffusion and dilution tests, examination under a microscope, and structural visualization via transmission electron microscopy (TEM). Furthermore, an acute liver injury model was established in rats through intraperitoneal injection of D-Galactosamine (D-Gal- N). To assess hepatic function and oxidative stress status, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in liver tissue were quantified. The liver coefficients for each group were calculated as an additional parameter. For histopathological evaluation, liver tissue sections from the experimental group were stained with Hematoxylin and Eosin (H&E) and examined microscopically under light conditions. These revisions aim to enhance clarity, correct minor grammatical errors (such as capitalization of "HE" to "H&E"), and ensure a smoother flow of information without altering the scientific content of your original text. RESULTS: Successful establishment and separation of four distinct phases were achieved, including the self-emulsifying nano-phase, precipitation phase, suspension phase, and true solution phase. The self-emulsifying nano-phase was characterized as spherical particles with an average diameter of approximately 100 nm. Pharmacodynamic assessments revealed that both Xiao-Chai-Hu decoction and its self-emulsifying nano-phase significantly reduced liver coefficients and alanine aminotransferase (ALT) levels compared to controls (P<0.05). However, no statistically significant differences were observed in regards to aspartate aminotransferase (AST) concentrations, malondialdehyde (MDA) content, or superoxide dismutase (SOD) activity between the treatment groups and control (P>0.05). These findings indicate that both Xiao-Chai-Hu decoction and its self-emulsifying nano-formulation ameliorated D-GalN-induced acute liver injury, albeit without statistically distinguishable efficacy between them (P>0.05). CONCLUSION: The presence of a self-emulsifying nano-phase within Xiao-Chai-Hu decoction is confirmed, and this nano-phase emerges as a therapeutically efficacious component in mitigating acute liver injury.

2.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793526

RESUMEN

The distribution of reinforcements and interfacial bonding state with the metal matrix are crucial factors in achieving excellent comprehensive mechanical properties for aluminum (Al) matrix composites. Normally, after heat treatment, graphene nanosheets (GNSs)/Al composites experience a significant loss of strength. Here, better performance of GNS/Al was explored with a hybrid strategy by introducing 0.9 vol.% silicon carbide nanoparticles (SiCnp) into the composite. Pre-ball milling of Al powders and 0.9 vol.% SiCnp gained Al flakes that provided a large dispersion area for 3.0 vol.% GNS during the shift speed ball milling process, leading to uniformly dispersed GNS for both as-sintered and as-extruded (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al. High-temperature heat treatment at 600 °C for 60 min was performed on the as-extruded composite, giving rise to intragranular distribution of SiCnp due to recrystallization and grain growth of the Al matrix. Meanwhile, nanoscale Al4C3, which can act as an additional reinforcing nanoparticle, was generated because of an appropriate interfacial reaction between GNS and Al. The intragranular distribution of both nanoparticles improves the Al matrix continuity of composites and plays a key role in ensuring the plasticity of composites. As a result, the work hardening ability of the heat-treated hybrid (0.9 vol.% SiCnp + 3.0 vol.% GNS)/Al composite was well improved, and the tensile elongation increased by 42.7% with little loss of the strength. The present work provides a new strategy in achieving coordination on strength-plasticity of Al matrix composites.

3.
ACS Appl Mater Interfaces ; 16(19): 24671-24682, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695273

RESUMEN

Polyethylene oxide (PEO)-based electrolytes are the most widely used solid polymer electrolyte (SPE) due to their high safety, excellent ability to dissociate lithium salts, low cost, and ease of preparation. However, low ionic conductivity and narrow electrochemical stability window limit their potential for further development. "Polymer-in-salt" electrolytes exhibit superior electrochemical performance; however, the high lithium salt concentration makes the SPE mechanically fragile when facing lithium dendrites. Therefore, preparing an SPE that can withstand a high concentration of lithium salt while still maintaining good mechanical properties has become a valuable challenge. In this study, a macroscopically homogeneous but nanoscopically phase-separated polymer matrix was designed as an electrolyte that can withstand a high concentration of lithium salt while retaining good mechanical properties, and this study investigated changes in the Li+ solvation structure within the electrolyte and analyzed the reasons for the simultaneous achievement of good ionic conductivity (1.02 × 10-3 S cm-1 at 60 °C) and mechanical properties (7 MPa at room temperature). The formation of large ion clusters at the phase interface and selective enrichment of lithium salt in specific regions are found to play crucial roles, and the critical current density (CCD) can reach a value of 2.2 mA cm-2. This work demonstrates a promising design approach for polymer electrolytes that achieves an optimal balance between SPE conductivity and mechanical properties through microstructure control.

4.
ACS Appl Mater Interfaces ; 16(15): 19480-19495, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581369

RESUMEN

Light-driven soft actuators based on photoresponsive materials can be used to mimic biological motion, such as hand movements, without involving rigid or bulky electromechanical actuations. However, to our knowledge, no robust photoresponsive material with desireable mechanical and biological properties and relatively simple manufacture exists for robotics and biomedical applications. Herein, we report a new visible-light-responsive thermoplastic elastomer synthesized by introducing photoswitchable moieties (i.e., azobenzene derivatives) into the main chain of poly(ε-caprolactone) based polyurethane urea (PAzo). A PAzo elastomer exhibits controllable light-driven stiffness softening due to its unique nanophase structure in response to light, while possessing excellent hyperelasticity (stretchability of 575.2%, elastic modulus of 17.6 MPa, and strength of 44.0 MPa). A bilayer actuator consisting of PAzo and polyimide films is developed, demonstrating tunable bending modes by varying incident light intensities. Actuation mechanism via photothermal and photochemical coupling effects of a soft-hard nanophase is demonstrated through both experimental and theoretical analyses. We demonstrate an exemplar application of visible-light-controlled soft "fingers" playing a piano on a smartphone. The robustness of the PAzo elastomer and its scalability, in addition to its excellent biocompatibility, opens the door to the development of reproducible light-driven wearable/implantable actuators and lightweight soft robots for clinical applications.


Asunto(s)
Elastómeros , Robótica , Elastómeros/química , Poliuretanos , Urea
5.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38668202

RESUMEN

The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 Å was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.

6.
J Colloid Interface Sci ; 665: 133-143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38520930

RESUMEN

Anion exchange membranes (AEMs) are the heart of alkaline fuel cells and water electrolysis, and have made a great progress in recent years. However, AEMs are still unable to satisfy the needs of high conductivity and stability, hindering their widespread commercialization. Side chain regulations have been widely used to prepare highly conductive and durable AEMs. Here, we construct a series of polyaromatic AEMs grafted with fluorinated cation side chains and cation-free alkyl chains with different end groups to explore the polar discrimination of side chains on membrane performance. This work demonstrates that AEMs grafting the cation side chains with superhydrophobic fluorine pendent and alkyl side chains with hydrophilic pendent enhance water content and ion conductivity. This is due to the strong immiscibility between the hydrophilic and hydrophobic head groups which promotes the establishments of microphase separation and ion highways. Specifically, poly(binaphthyl-co-terphenyl piperidinium) containing fluorinated piperidinium side chains and alkyl chains with methoxy pendent (QBNTP-QFM) possesses a satisficed OH- conductivity (170.6 mS cm-1 at 80 °C) and can tolerate 5 M hot NaOH for 2100 h with only 3.4 % conductivity loss. Expectedly, the single cell with QBNTP-QFM yields a prominent maximum power density of 1.62 W cm-2 and the water electrolysis cell with QBNTP-QFM achieves a pronounced current density of 3.0 A cm-2 at 1.8 V, both cells also display a prominent durability for 120 h operation. The results prove that this side chain optimization can improve ion conductivity and is a promising method for AEM development.

7.
Macromol Biosci ; 24(4): e2300402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38102867

RESUMEN

This study describes the formation, size control, and penetration behavior of polymer nanodots (Pdots) consisting of single or few chain polythiophene-based conjugated polyelectrolytes (CPEs) via nanophase separation between good solvent and poor solvent of CPE. Though the chain singularity may be associated with dilution nanophase separation suggests that molecules of a good solvent create a thermodynamically driven solvation layer surrounding the CPEs and thereby separating the single chains even in their poor solvents. This statement is therefore corroborated with emission intensity/lifetime, particle size, and scattering intensity of polyelectrolyte in good and poor solvents. Regarding the augmented features, Pdots are implemented into cell imaging studies to understand the nuclear penetration and to differentiate the invasive characteristics of breast cancer cells. The python based red, green, blue (RGB) color analysis   depicts that Pdots have more nuclear penetration ability in triple negative breast cancer cells due to the different nuclear morphology in shape and composition and Pdots have penetrated cell membrane as well as extracellular matrix in spheroid models. The current Pdot protocol and its utilization in cancer cell imaging are holding great promise for gene/drug delivery to target cancer cells by explicitly achieving the very first priority of nuclear intake.


Asunto(s)
Colorantes Fluorescentes , Puntos Cuánticos , Semiconductores , Polímeros , Polielectrolitos , Solventes
8.
ACS Nano ; 18(1): 1098-1109, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154058

RESUMEN

A polymer separator plays a pivotal role in battery safety, overall electrochemical performance, and cell assembly process. Traditional separators are separately produced from the electrodes and dominated by porous polyolefin thin films. In spite of their commercial success, today's separators are facing growing challenges with the increasing demand on the device safety and performance. As an attempt to address this urgent need, here, we propose a concept of in situ separator technology by manipulating the two-dimensional (2D) microfluid nanophase separation (2D-MFPS) of a poly(vinylidene difluoride)/lithium salt solution during drying. Particularly, nanophase separation is effectively regulated by low humidity, salt type, and compositions. For application studies, this 2D-MFPS is directly performed onto commercial electrodes under drying conditions with low humidity to fabricate a high-performance in situ separator with thickness and porous structures comparable to those of commercial Celgard separators. This in situ separator shows superior performance in high-temperature stability and wetting capability to a variety of liquid electrolytes. Finally, pouch cells with this in situ separator technology are successfully assembled with an extremely simplified separator-stacking-free process and demonstrate stable cycle performance due to the well-controlled porous structures and electrode-separator interface.

9.
ACS Nano ; 17(12): 11914-11922, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37306458

RESUMEN

Switching the crystalline phase of a material via electrostatic control is a proven strategy for developing memory devices such as memristors that are based on nonvolatile resistance switching phenomena. However, phase switching in atomic-scale systems is often difficult to control and poorly understood. Here, we explore nonvolatile switching of long 2.3 nm wide bistable nanophase domains in a Sn double-layer structure grown on Si(111), using a scanning tunneling microscope. We identified two mechanisms for this phase switching phenomenon. First, the electrical field across the tunnel gap continuously tunes the relative stability of the two phases and favors one over the other depending on the tunneling polarity. The second mechanism involves carrier injection into empty Sn orbitals. The coupling between these relatively long-lived hot electrons and surface phonons induces a lattice instability at sufficiently large tunneling current and provides access to a hidden metastable state of matter. This hidden state is nonvolatile but can be erased by choosing the appropriate tunneling conditions or raising the temperature. Similar mechanisms could possibly be exploited in phase-change memristor and field effect devices.

10.
Materials (Basel) ; 16(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37374467

RESUMEN

The formation of coarse primary Si is the main scientific challenge faced in the preparation of high-Si Al matrix composites. The SiC/Al-50Si composites are prepared by high pressure solidification, which allows the primary Si to form a SiC-Si spherical microstructure with SiC, while the solubility of Si in Al is increased by high pressure to reduce the proportion of primary Si, thus enhancing the strength of the composites. The results show that the high melt viscosity under high pressure makes the SiC particles almost "fixed" in situ. The SEM analysis shows that the presence of SiC in the growth front of the primary Si will hinder its continued growth and eventually form SiC-Si spherical microstructure. Through aging treatment, a large number of dispersed nanoscale Si phases are precipitated in the α-Al supersaturated solid solution. The TEM analysis shows that a semi-coherent interface is formed between the α-Al matrix and the nanoscale Si precipitates. The three-point bending tests shows that the bending strength of the aged SiC/Al-50Si composites prepared at 3 GPa is 387.6 MPa, which is 18.6% higher than that of the unaged composites.

11.
ACS Appl Mater Interfaces ; 15(19): 23299-23305, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37140359

RESUMEN

A copper-zirconia composite having an evenly distributed lamellar texture, Cu#ZrO2, was synthesized by promoting nanophase separation of the Cu51Zr14 alloy precursor in a mixture of carbon monoxide (CO) and oxygen (O2). High-resolution electron microscopy revealed that the material consists of interchangeable Cu and t-ZrO2 phases with an average thickness of 5 nm. Cu#ZrO2 exhibited enhanced selectivity toward the generation of formic acid (HCOOH) by electrochemical reduction of carbon dioxide (CO2) in aqueous media at a Faradaic efficiency of 83.5% at -0.9 V versus the reversible hydrogen electrode. In situ Raman spectroscopy has revealed that a bifunctional interplay between the Zr4+ sites and the Cu boundary leads to amended reaction selectivity along with a large number of catalytic sites.

12.
Nano Lett ; 23(9): 3887-3896, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37094227

RESUMEN

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.

13.
J Biomed Mater Res B Appl Biomater ; 111(8): 1499-1510, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929288

RESUMEN

Currently, traditional cancer treatment strategies are greatly challenged by the existence of cancer stem cells (CSCs), which are root cause of chemotherapy resistance. Differentiation therapy presents a novel therapeutic strategy for CSC-targeted therapy. However, there are very few studies on the induction of CSCs differentiation so far. Silicon nanowire array (SiNWA) with many unique properties is considered to be an excellent material for various applications ranging from biotechnology to biomedical applications. In this study, we report the SiNWA differentiates MCF-7-derived breast CSCs (BCSCs) into non-CSCs by modulating the morphology of cells. In vitro, the differentiated BCSCs lose the stemness properties and thus become sensitive to chemotherapeutic drugs, eventually leading to the death of BCSCs. Therefore, this work suggests a potential approach for overcoming chemotherapeutic resistance.


Asunto(s)
Neoplasias de la Mama , Nanocables , Humanos , Femenino , Línea Celular Tumoral , Silicio/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Diferenciación Celular , Células Madre Neoplásicas
14.
Nanomaterials (Basel) ; 13(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36770417

RESUMEN

Irradiation-induced point defects and applied stress affect the concentration distribution and morphology evolution of the nanophase in Fe-Cr based alloys; the aggregation of point defects and the nanoscale precipitates can intensify the hardness and embrittlement of the alloy. The influence of normal strain on the coevolution of point defects and the Cr-enriched α' nanophase are studied in Fe-35 at.% Cr alloy by utilizing the multi-phase-field simulation. The clustering of point defects and the splitting of nanoscale particles are clearly presented under normal strain. The defects loop formed at the α/α' phase interface relaxes the coherent strain between the α/α' phases, reducing the elongation of the Cr-enriched α' phase under the normal strains. Furthermore, the point defects enhance the concentration clustering of the α' phase, and this is more obvious under the compressive strain at high temperature. The larger normal strain can induce the splitting of an α' nanoparticle with the nonequilibrium concentration in the early precipitation stage. The clustering and migration of point defects provide the diffusion channels of Cr atoms to accelerate the phase separation. The interaction of point defect with the solution atom clusters under normal strain provides an atomic scale view on the microstructure evolution under external stress.

15.
ACS Appl Mater Interfaces ; 15(4): 5301-5308, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662503

RESUMEN

The utilization of thermoelectric devices that directly convert waste heat to electricity is an effective approach to alleviate the global energy crisis. However, the low efficiency of thermoelectric materials has puzzled the widespread applications. The CoSb3-based skutterudites are favored by device integration due to the excellent thermal stability, while the development of pristine CoSb3 materials is limited by the ultra-high thermal conductivity and the poor Seebeck coefficient. In this work, we demonstrate that both structural improvement and strong phonon interaction are realized simultaneously in In-filled CoSb3 coordinated with excessive Sb. The extra Sb compensates the deficiency on the Sb4 ring, improving the Seebeck coefficient, and cooperates with In to further advance the carrier concentration. Therefore, the structure optimization and chemical potential regulation maximize the electrical properties. Thermally, the residual InSb nanoparticles and partial In/Sb-alloying, along with vibration of In in voids, jointly shorten the multi-frequency phonon relaxation time, leading to a dramatic decline in the lattice thermal conductivity. As a result, a maximum zTmax of ∼1.27 at 650 K and an average zTavg of ∼0.9 from 300 to 750 K was obtained in In1.4Co4Sb12 + 8%Sb, respectively. Our findings provide valuable guidance for the selection of CoSb3-based skutterudite dopants to achieve high-performance thermoelectric materials.

16.
Angew Chem Int Ed Engl ; 62(5): e202214444, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36448534

RESUMEN

Can commodity polymers are made to be healable just by blending with self-healable polymers? Here we report the first study on the fundamental aspect of this practically challenging issue. Poly(ether thiourea) (PTUEG3 ; Tg =27 °C) reported in 2018 is extraordinary in that it is mechanically robust but can self-heal even at 12 °C. In contrast, poly(octamethylene thiourea) (PTUC8 ; Tg =50 °C), an analogue of PTUEG3 , cannot heal below 92 °C. We found that their polymer blend self-healed in a temperature range above 32 °C even when its PTUEG3 content was only 20 mol %. Unlike PTUEG3 alone, this polymer blend, upon exposure to high humidity, barely plasticized, keeping its excellent mechanical properties due to the non-hygroscopic nature of the PTUC8 component. CP/MAS 13 C NMR analysis revealed that the polymer blend was nanophase-separated, which possibly accounts for why such a small amount of PTUEG3 provided the polymer blend with humidity-tolerant self-healable properties.

17.
Sci Bull (Beijing) ; 67(16): 1696-1701, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36546049

RESUMEN

The lunar soils evolution over time is mainly caused by space weathering that includes the impacts of varying-sized meteoroids and charged particles implantation of solar/cosmic winds as well. It has long been established that space weathering leads to the formation of outmost amorphous layers (50-200 nm in thickness) embedded nanophase iron (npFe0) around the mineral fragments, albeit the origin of the npFe0 remains controversial . The Chang'e-5 (CE-5) mission returned samples feature the youngest mare basalt and the highest latitude sampling site , providing an opportunity to seek the critical clues for understanding the evolution of soils under space weathering. Here, we report the surface microstructures of the major minerals including olivine, pyroxene, anorthite, and glassy beads in the lunar soil of CE-5. Unlike the previous observations, only olivine in all crystals is surrounded by a thinner outmost amorphous SiO2 layer (∼10 nm thick) and embedded wüstite nanoparticles FeO (np-FeO, 3-12 nm in size) instead of npFe0. No foreign volatile elements deposition layer and solar flare tracks can be found on the surface or inside the olivine and other minerals. This unique rim structure has not been reported for any other lunar, terrestrial, Martian, or meteorite samples so far. The observation of wüstite FeO and the microstructures support the existence of an intermediate stage in space weathering for lunar minerals by thermal decomposition.


Asunto(s)
Marte , Suelo , Animales , Femenino , Caballos , Dióxido de Silicio , Medio Ambiente Extraterrestre , Minerales/química
18.
Microbiome ; 10(1): 209, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36457010

RESUMEN

BACKGROUND: The accurate and comprehensive analyses of genome-resolved metagenomics largely depend on the reconstruction of reference-quality (complete and high-quality) genomes from diverse microbiomes. Closing gaps in draft genomes have been approaching with the inclusion of Nanopore long reads; however, genome quality improvement requires extensive and time-consuming high-accuracy short-read polishing. RESULTS: Here, we introduce NanoPhase, an open-source tool to reconstruct reference-quality genomes from complex metagenomes using only Nanopore long reads. Using Kit 9 and Q20+ chemistries, we first evaluated the feasibility of NanoPhase using a ZymoBIOMICS gut microbiome standard (including 21 strains), then sequenced the complex activated sludge microbiome and reconstructed 275 MAGs with median completeness of ~ 90%. As a result, NanoPhase improved the MAG contiguity (median MAG N50: 735 Kb, 44-86X compared to conventional short-read-based methods) while maintaining high accuracy, allowing for a full and accurate investigation of target microbiomes. Additionally, leveraging these high-contiguity reference-quality genomes, we identified 165 prophages within 111 MAGs, with 5 as active prophages, indicating the prophage was a neglected source of genetic diversity within microbial populations and influencer in shaping microbial composition in the activated sludge microbiome. CONCLUSIONS: Our results demonstrated that NanoPhase enables reference-quality genome reconstruction from complex metagenomes directly using only Nanopore long reads. Furthermore, besides the 16S rRNA genes and biosynthetic gene clusters, the generated high-accuracy and high-contiguity MAGs improved the host identification of critical mobile genetic elements, e.g., prophage, serving as a genomic blueprint to investigate the microbial potential and ecology in the activated sludge ecosystem. Video Abstract.


Asunto(s)
Microbiota , Nanoporos , Metagenoma/genética , Metagenómica , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Microbiota/genética , Profagos
19.
ACS Nano ; 16(12): 20186-20196, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36493340

RESUMEN

Compared to alloy bulk phase diagrams, the experimental determination of phase diagrams for alloy nanoparticles (NPs), which are useful in various nanotechnological applications, involves significant technical difficulties, making theoretical modeling a feasible alternative. Yet, being quite challenging, modeling of separation nanophase diagrams is scarce in the literature. The task of predicting comprehensive nanophase diagrams for Pd-Ir face-centered cubic-based three cuboctahedra is facilitated in this study by combining the computationally efficient statistical-mechanical Free-energy Concentration Expansion Method, which includes short-range order (SRO) with coordination-dependent bond-energy variations as part of the input and with rotationally symmetric site grouping for extra efficiency. This nanosystem has been chosen mainly because of the very small atomic mismatch that simplifies the modeling, e.g., in the assessment of vibrational entropy contributions based in this work on fitting to the Pd-Ir experimental bulk critical temperature. This entropic effect, together with SRO, leads to significant destabilization of low-T Quasi-Janus (QJ) asymmetric configurations of the NP core, which transform to symmetric partially mixed nanophases. First-order and second-order intracore transitions are predicted for dilute and intermediate-range compositions, respectively. Caloric curves computed for the former case yield the NP-size dependent transition latent heat, and in the latter case critical temperatures exhibit a specific scaling behavior. The computed separation diagrams and intracore solubility diagrams reflect enhanced elemental mixing in smaller QJ nanophases. In addition to these diagrams, the revealed near-surface compositional variations are likely to be pertinent to the utilization of Pd-Ir NPs, e.g., in catalysis.

20.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957039

RESUMEN

Nanostructured titania is one of the most commonly encountered constituents of nanotechnology devices for use in energy-related applications, due to its intrinsic functional properties as a semiconductor and to other favorable characteristics such as ease of production, low toxicity and chemical stability, among others. Notwithstanding this diffusion, the quest for improved understanding of the physical and chemical mechanisms governing the material properties and thus its performance in devices is still active, as testified by the large number of dedicated papers that continue to be published. In this framework, we consider and analyze here the effects of the material morphology and structure in determining the energy transport phenomena as cross-cutting properties in some of the most important nanophase titania applications in the energy field, namely photovoltaic conversion, hydrogen generation by photoelectrochemical water splitting and thermal management by nanofluids. For these applications, charge transport, light transport (or propagation) and thermal transport are limiting factors for the attainable performances, whose dependence on the material structural properties is reviewed here on its own. This work aims to fill the gap existing among the many studies dealing with the separate applications in the hope of stimulating novel cross-fertilization approaches in this research field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA