Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39269049

RESUMEN

The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.

2.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38202566

RESUMEN

Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.

3.
J Nanobiotechnology ; 21(1): 260, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553670

RESUMEN

Thrombotic vascular disorders, specifically thromboembolisms, have a significant detrimental effect on public health. Despite the numerous thrombolytic and antithrombotic drugs available, their efficacy in penetrating thrombus formations is limited, and they carry a high risk of promoting bleeding. Consequently, the current medication dosage protocols are inadequate for preventing thrombus formation, and higher doses are necessary to achieve sufficient prevention. By integrating phototherapy with antithrombotic therapy, this study addresses difficulties related to thrombus-targeted drug delivery. We developed self-assembling nanoparticles (NPs) through the optimization of a co-assembly engineering process. These NPs, called DIP-FU-PPy NPs, consist of polypyrrole (PPy), dipyridamole (DIP), and P-selectin-targeted fucoidan (FU) and are designed to be delivered directly to thrombi. DIP-FU-PPy NPs are proposed to offer various potentials, encompassing drug-loading capability, targeted accumulation in thrombus sites, near-infrared (NIR) photothermal-enhanced thrombus management with therapeutic efficacy, and prevention of rethrombosis. As predicted, DIP-FU-PPy NPs prevented thrombus recurrence and emitted visible fluorescence signals during thrombus clot penetration with no adverse effects. Our co-delivery nano-platform is a simple and versatile solution for NIR-phototherapeutic multimodal thrombus control.


Asunto(s)
Nanopartículas , Trombosis , Dipiridamol/farmacología , Nanopartículas/uso terapéutico , Selectina-P , Fototerapia/métodos , Polímeros , Pirroles , Trombosis/tratamiento farmacológico , Animales
4.
Biomaterials ; 298: 122127, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086554

RESUMEN

Cancer cells are equipped with abundant antioxidants such as glutathione (GSH) that eliminate reactive oxygen species (ROS) to deteriorate the therapeutic efficacy of photodynamic therapy (PDT). Another challenge in PDT is circumventing PDT-induced hypoxic condition that provokes upregulation of pro-angiogenic factor such as vascular endothelial growth factor (VEGF). It is therefore reasonable to expect that therapeutic outcomes of PDT could be maximized by concurrent delivery of photosensitizers with GSH depleting agents and VEGF suppressors. To achieve cooperative therapeutic actions of PDT with in situ GSH depletion and VEGF suppression, we developed tumor targeted redox-regulating and antiangiogenic phototherapeutic nanoassemblies (tRAPs) composed of self-assembling disulfide-bridged borylbenzyl carbonate (ssBR), photosensitizer (IR780) and tumor targeting gelatin. As a framework of tRAPs, ssBR was rationally designed to form nanoconstructs that serve as photosensitizer carriers with intrinsic GSH depleting- and VEGF suppressing ability. tRAPs effectively depleted intracellular GSH to render cancer cells more vulnerable to ROS and also provoked immunogenic cell death (ICD) of cancer cells upon near infrared (NIR) laser irradiation. In mouse xenograft models, tRAPs preferentially accumulated in tumors and dramatically eradicated tumors with laser irradiation. The design rationale of tRAPs provides a simple and versatile strategy to develop self-boosting phototherapeutic agents with great potential in targeted cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Animales , Ratones , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Fototerapia , Neoplasias/tratamiento farmacológico , Glutatión/metabolismo , Oxidación-Reducción
5.
ACS Appl Bio Mater ; 6(5): 1915-1933, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37083301

RESUMEN

The delivery and accumulation of therapeutic drugs into cancer cells without affecting healthy cells are a major challenge for antitumor therapy. Here, we report the synthesis of a liposomal hybrid gold nano-assembly with enhanced photothermal activity for lung cancer treatment. The core components of the nano-assembly include gold nanorods coated with a mesoporous silica shell that offers an excellent drug-loading surface for encapsulation of doxorubicin. To enhance the photothermal capacity of nano-assembly, IR 780 dye was loaded inside a thermo-sensitive liposome, and then, the core nano-assembly was wrapped within the liposome, and GE-11 peptide and folic acid were conjugated onto the surface of the liposome to give the final nano-assembly [(GM@Dox) LI]-PF. The dual targeting approach of [(GM@Dox) LI]-PF leads to enhanced cellular uptake and improves the accumulation of nano-assemblies in cancer cells that overexpress the epidermal growth factor receptor and folate. The exposure of near-infrared laser irradiation can trigger photothermal-induced structural disruption of the nano-assembly, which allows for the precise and controllable release of Dox at targeted sites. Additionally, chemo-photothermal therapy was shown to be 11 times more effective in cancer cell treatment when compared to Dox alone. Our systematic study suggests that the nano-assemblies facilitate the cancer cells undergoing apoptosis via an intrinsic mitochondrial pathway that can be directly triggered by the chemo-photothermal treatment. This study offers an appealing candidate that holds great promise for synergistic cancer treatment.


Asunto(s)
Carcinoma , Hipertermia Inducida , Neoplasias Pulmonares , Humanos , Liposomas , Terapia Fototérmica , Oro/química , Neoplasias Pulmonares/tratamiento farmacológico , Doxorrubicina , Pulmón , Carcinoma/tratamiento farmacológico
6.
Nanomaterials (Basel) ; 13(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36616109

RESUMEN

Despite the availability of nano and submicron-sized additive materials, the controlled incorporation and utilization of these additives remain challenging due to their difficult handling ability and agglomeration-prone properties. The formation of composite granules exhibiting unique microstructure with desired additives distribution and good handling ability has been reported using the electrostatic integrated granulation method. This study demonstrates the feasible controlled incorporation of two-dimensional hexagonal boron nitride (hBN) sheets with alumina (Al2O3) particles, forming Al2O3-hBN core-shell composite granules. The sintered artifacts obtained using Al2O3-hBN core-shell composite granules exhibited an approximately 28% higher thermal conductivity than those obtained using homogeneously hBN-incorporated Al2O3 composite granules. The findings from this study would be beneficial for developing microstructurally controlled composite granules with the potential for scalable fabrication via powder-metallurgy inspired methods.

7.
Vaccines (Basel) ; 11(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36679946

RESUMEN

In spite of its high effectiveness in the treatment of both leishmaniasis as well as a range of fungal infections, the free form of the polyene antibiotic amphotericin B (AmB) does not entertain the status of the most preferred drug of choice in clinical settings. The high intrinsic toxicity of the principal drug could be considered the main impedance in the frequent medicinal use of this otherwise very effective antimicrobial agent. Taking into consideration this fact, the pharma industry has introduced many novel dosage forms of AmB to alleviate its toxicity issues. However, the limited production, high cost, requirement for a strict cold chain, and need for parenteral administration are some of the limitations that explicitly compel professionals to look for the development of an alternate dosage form of this important drug. Considering the fact that the nano-size dimensions of drug formulation play an important role in increasing the efficacy of the core drug, we employed a green method for the development of nano-assemblies of AmB (AmB-NA). The as-synthesized AmB-NA manifests desirable pharmacokinetics in the treated animals. The possible mechanistic insight suggested that as-synthesized AmB-NA induces necrosis-mediated cell death and severe mitochondrial dysfunction in L. donovani promastigotes by triggering depolarization of mitochondrial membrane potential. In vivo studies demonstrate a noticeable decline in parasite burden in the spleen, liver, and bone marrow of the experimental BALB/c mice host. In addition to successfully suppressing the Leishmania donovani, the as-formed AmB-NA formulation also modulates the host immune system with predominant Th1 polarization, a key immune defender that facilitates the killing of the intracellular parasite.

8.
Adv Healthc Mater ; 12(10): e2202409, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36588425

RESUMEN

Fungal hyphae deeply invade the cornea in fungal keratitis. The corneal stroma hinders the infiltration of antifungal drugs and reduces their bioavailability. Here, this work reports a peptide conjugate nano-assembly that permeates the stroma and kills the pathogen without irritating the ocular cornea. The hydrophilic surface of the nano-assembly ensures deep permeation into the stroma. When encountering a fungal hyphal cell, the nano-assembly disassembles and exposes the α-helical peptide to destroy the fungal membrane, thus inactivating the pathogen. In a rabbit model of fungal keratitis, the nano-assembly exhibits a better therapeutic effect than commercially available natamycin ophthalmic suspension. Peptide conjugates with a nano-assembled structure and assembly-disassembly behavior could serve as the foundation of a new therapy for fungal keratitis.


Asunto(s)
Infecciones Fúngicas del Ojo , Queratitis , Animales , Conejos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Córnea , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Péptidos/farmacología , Péptidos/uso terapéutico
9.
Anal Chim Acta ; 1241: 340778, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36657871

RESUMEN

Endogenous peroxynitrite plays a very important role in the regulation of life activities. However, validated tools for ONOO- tests are currently insufficient. We designed a fluorescent probe TPA-F-NO2 with a low fluorescence background in water based on the D-π-A structure for the imaging of endogenous ONOO- in living cells. TPA-F-NO2 can realize the naked eye detection of ONOO- due to the obvious color change. TPA-F-NO2 has the advantages of large stokes shift, high signal-to-noise ratio, high selectivity and sensitivity. The quantitative detection can be achieved in the range of 0-14 µM ONOO-. Due to its solvatochromic characteristics, TPA-F-NO2 has the potential to be used in OLEDs and other fields. In addition, 4-methylumbelliferone has a wide range of anticancer effects as an inhibitor of hyaluronic acid. We prepared TPA-MU-NPs by assembling TPA-F-NO2 and 4-methylumbelliferone. It also endows TPA-MU-NPs with ONOO- imaging function and anti-proliferation effect on breast cancer cells and other cells. This 'probe-drug' assembly strategy provides ideas for the design and optimization of dual-functional probes.


Asunto(s)
Colorantes Fluorescentes , Ácido Peroxinitroso , Humanos , Colorantes Fluorescentes/toxicidad , Colorantes Fluorescentes/química , Ácido Peroxinitroso/química , Himecromona , Dióxido de Nitrógeno , Imagen Óptica
10.
Materials (Basel) ; 15(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499902

RESUMEN

A series of three-dimensional porous composite α-MnO2/reduced graphene oxides (α-MnO2/RGO) were prepared by nano-assembly in a hydrothermal environment at pH 9.0-13.0 using graphene oxide as the precursor, KMnO4 and MnCl2 as the manganese sources and F- as the control agent of the α-MnO2 crystal form. The α-MnO2/RGO composites prepared at different hydrothermal pH levels presented porous network structures but there were significant differences in these structures. The special pore structure promoted the migration of ions in the electrolyte in the electrode material, and the larger specific surface area promoted the contact between the electrode material and the electrolyte ions. The introduction of graphene solved the problem of poor conductivity of MnO2, facilitated the rapid transfer of electrons, and significantly improved the electrochemical performance of materials. When the pH was 12.0, the specific surface area of the 3D porous composite material αMGs-12.0 was 264 m2·g-1, and it displayed the best super-capacitive performance; in Na2SO4 solution with 1.0 mol·L-1 electrolyte, the specific capacitance was 504 F·g-1 when the current density was 0.5 A·g-1 and the specific capacitance retention rate after 5000 cycles was 88.27%, showing that the composite had excellent electrochemical performance.

11.
Foods ; 11(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36141040

RESUMEN

Curcumin loaded octenylsuccinate fish scale gelatin (OFSG) was prepared in this study, to explore the potential of FSG for delivering hydrophobic nutrients. The effects of molecule weight (Mw, 22,677-369 g/mol) and degree of substitution (DS, 0-0.116) on the curcumin loading efficiency (CLE, µg/mL) of OFSG (6.98-26.85 mg/mL) were evaluated. The expose of interior hydrophobic groups in FSG and increased intermolecular hydrophobic area contributed to the loading of curcumin in two phases, respectively. The interaction between OFSG and curcumin showed a decreased absorption in FTIR and an increased crystallinity in XRD. The loading of curcumin into OFSG caused a significant decrease of the particle size (from 350-12,070 to 139-214 nm), PDI (from 0.584-0.659 to 0.248-0.347) and ζ-potential (-12.2 or -11.4 to -21.0 or -20.3). OFSG showed a significantly higher stability and lower release of curcumin than FSG at the end of the simulated gastrointestinal digestion. Thus, OFSG showed great potential in the construction of a carrier for hydrophobic nutrients.

12.
Biomed Pharmacother ; 153: 113506, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076595

RESUMEN

As the sixth leading cause of cancer death, esophageal cancer is threatening the life of people worldwide. Traditional treatments, such as surgery, chemotherapy, radiotherapy, are facing always augmented challenges including invasion, multidrug resistance (MDR), off-target toxicity. Chemo & Photodynamic synergistic therapy represents one promising strategy for improved treatment efficiency. But it is still hindered by the lack of tumor targeting, deleterious side effects, and unfavorable microenvironment for photodynamic therapy (PDT). To overcome those obstacles, one theranostic nano-assambly drug, GCDs-Ce6/Pt-EGF, was designed and fabricated. Green fluorescence carbon dots (GCDs) with the excellent optical properties, modifiability and low toxicity were prepared as drug carrier. Epidermal growth factor (EGF) was conjugated to the nano-assembly to realize tumor specific targeting. Chlorin e6 (Ce6) in the presence of laser irradiation achieved PDT by generating proapoptosis reactive oxygen species (ROS). Moreover, Ce6 incorporated into GCDs endowed the nano-assambly imaging ability and facilitate image-guided therapy. Pt(IV), cisplatin prodrug, in the nano-assambly depleted the glutathione (GSH) of tumor microenvironment when it was reduced to cytotoxicity Pt(II). Compared with single treatment, GCDs-Ce6/Pt-EGF exhibited enhanced tumor cell killing capacity and better biosafety in vitro and in vivo, especially for EGFR bearing tumor. It paved ways for developing novel theranostic agent to be potentially applied in clinic.


Asunto(s)
Neoplasias Esofágicas , Nanopartículas , Fotoquimioterapia , Porfirinas , Línea Celular Tumoral , Factor de Crecimiento Epidérmico , Neoplasias Esofágicas/tratamiento farmacológico , Glutatión/farmacología , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Medicina de Precisión , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
13.
Cell Rep Phys Sci ; 3(9): 101048, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36157982

RESUMEN

The mechanical force between a virus and its host cell plays a critical role in viral infection. However, characterization of the virus-cell mechanical force at the whole-virus level remains a challenge. Herein, we develop a platform in which the virus is anchored with multivalence-controlled aptamers to achieve transfer of the virus-cell mechanical force to a DNA tension gauge tether (Virus-TGT). When the TGT is ruptured, the complex of binding module-virus-cell is detached from the substrate, accompanied by decreased host cell-substrate adhesion, thus revealing the mechanical force between whole-virus and cell. Using Virus-TGT, direct evidence about the biomechanical force between SARS-CoV-2 and the host cell is obtained. The relative mechanical force gap (<10 pN) at the cellular level between the wild-type virus to cell and a variant virus to cell is measured, suggesting a possible positive correlation between virus-cell mechanical force and infectivity. Overall, this strategy provides a new perspective to probe the SARS-CoV-2 mechanical force.

14.
ACS Nano ; 16(7): 10219-10230, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35671037

RESUMEN

Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.


Asunto(s)
Miocitos Cardíacos , Robótica , Ingeniería de Tejidos , Acústica
15.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335762

RESUMEN

Polyelectrolytes (PEs) have been the aim of many research studies over the past years. PE films are prepared by the simple and versatile layer-by-layer (LbL) approach using alternating assemblies of polymer pairs involving a polyanion and a polycation. The adsorption of the alternating PE multiple layers is driven by different forces (i.e., electrostatic interactions, H-bonding, charge transfer interactions, hydrophobic forces, etc.), which enable an accurate control over the physical properties of the film (i.e., thickness at the nanoscale and morphology). These PE nano-assemblies have a wide range of biomedical and healthcare applications, including drug delivery, protein delivery, tissue engineering, wound healing, and so forth. This review provides a concise overview of the most outstanding research on the design and fabrication of PE nanofilms. Their nanostructures, molecular interactions with biomolecules, and applications in the biomedical field are briefly discussed. Finally, the perspectives of further research directions in the development of LbL nano-assemblies for healthcare and medical applications are highlighted.

16.
Micromachines (Basel) ; 13(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35334691

RESUMEN

The present work describes the phenomenological approach to automatically determine the frequency range for positive and negative dielectrophoresis (DEP)-an electrokinetic force that can be used for massively parallel micro- and nano-assembly. An experimental setup consists of the microfabricated chip with gold microelectrode array connected to a function generator capable of digitally controlling an AC signal of 1 V (peak-to-peak) and of various frequencies in the range between 10 kHz and 1 MHz. The suspension of latex microbeads (3-µm diameter) is either attracted or repelled from the microelectrodes under the influence of DEP force as a function of the applied frequency. The video of the bead movement is captured via a digital camera attached to the microscope. The OpenCV software package is used to digitally analyze the images and identify the beads. Positions of the identified beads are compared for successive frames via Artificial Intelligence (AI) algorithm that determines the cloud behavior of the microbeads and algorithmically determines if the beads experience attraction or repulsion from the electrodes. Based on the determined behavior of the beads, algorithm will either increase or decrease the applied frequency and implement the digital command of the function generator that is controlled by the computer. Thus, the operation of the study platform is fully automated. The AI-guided platform has determined that positive DEP (pDEP) is active below 500 kHz frequency, negative DEP (nDEP) is evidenced above 1 MHz frequency and the crossover frequency is between 500 kHz and 1 MHz. These results are in line with previously published experimentally determined frequency-dependent DEP behavior of the latex microbeads. The phenomenological approach assisted by live AI-guided feedback loop described in the present study will assist the active manipulation of the system towards the desired phenomenological outcome such as, for example, collection of the particles at the electrodes, even if, due to the complexity and plurality of the interactive forces, model-based predictions are not available.

17.
Adv Drug Deliv Rev ; 179: 114028, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34736987

RESUMEN

The phenomenon of aggregation-induced emission (AIE) is inseparable from molecular aggregation and self-assembly. Therefore, the combination of AIE and supramolecular self-assembly is well-matched. AIE-guided dynamic assembly (AGDA) could effectively respond to the endogenous stimuli (such as pH, enzymes, redox molecules) and exogenous stimuli (temperature, light, ultrasound) in the disease microenvironment, so as to achieve specific imaging and diagnosis of the disease lesions. Moreover, AGDA also dynamically adjust the intramolecular motions of AIE molecules, thereby adjusting the energy dissipation pathways and realizing the switch between photodynamic therapy and photothermal therapy for superior therapeutic effects. In this review, we aim to give an overview of the constructing strategies, stimuli-responsive imaging, regulation of intramolecular motion of AGDA in recent years, which is expected to grasp the research status and striving directions of AGDA for imaging and therapy.


Asunto(s)
Nanomedicina , Imagen Óptica/métodos , Humanos , Fotoquimioterapia , Fototerapia , Especies Reactivas de Oxígeno
18.
J Control Release ; 339: 547-552, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34478749

RESUMEN

Self-assembly in nature creates matter with complex structures and unpredictable designs; disordered building blocks spontaneously organize into ordered structures to achieve specific functions. Self-assembly begins to play an important role in the design of advanced drug delivery as well. Though, the behavior of 'dynamic nanoassembly-based drug delivery systems' (DNDDS) in biological media and cells remains poorly understood, while this is highly critical for controlling spatiotemporal drug release from DNDDS in vivo. To deepen the understanding of tailor-made DNDDS, this contribution in the Oration - New Horizons section of the Journal of controlled Release aims to highlight nature-inspired designs, construction principles, and controllable functionalities of DNDDS and how they are triggered by endogenous and exogenous stimuli. Furthermore, biomedical applications of tailor-made DNDDS for accurate diagnosis and precise treatment of diseases, including tumors, neurological diseases, injuries and infections are discussed. Finally, current challenges and future perspectives of DNDDS are briefly outlined.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Liberación de Fármacos , Humanos , Neoplasias/tratamiento farmacológico
19.
Acta Pharm Sin B ; 10(6): 1122-1133, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32642417

RESUMEN

This study aimed to explore the link between block copolymers' interfacial properties and nanoscale carrier formation and found out the influence of length ratio on these characters to optimize drug delivery system. A library of diblock copolymers of PEG-PCL and triblock copolymers with additional PEI (PEG-PCL-PEI) were synthesized. Subsequently, a systematic isothermal investigation was performed to explore molecular arrangements of copolymers at air/water interface. Then, structural properties and drug encapsulation in self-assembly were investigated with DLS, SLS and TEM. We found the additional hydrogen bond in the PEG-PCL-PEI contributes to film stability upon the hydrophobic interaction compared with PEG-PCL. PEG-PCL-PEI assemble into smaller micelle-like (such as PEG-PCL4006-PEI) or particle-like structure (such as PEG-PCL8636-PEI) determined by their hydrophilic and hydrophobic block ratio. The distinct structural architectures of copolymer are consistent between interface and self-assembly. Despite the disparity of constituent ratio, we discovered the arrangement of both chains guarantees balanced hydrophilic-hydrophobic ratio in self-assembly to form stable construction. Meanwhile, the structural differences were found to have significant influence on model drugs incorporation including docetaxel and siRNA. Taken together, these findings indicate the correlation between molecular arrangement and self-assembly and inspire us to tune block compositions to achieve desired nanostructure and drug loading.

20.
Biomaterials ; 244: 119964, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32200102

RESUMEN

Despite of the documented immunogenic cell death (ICD) and antigen cross-presentation (AC) in photodynamic therapy (PDT), the overall immune efficacy is rather limited. This study aims to expand the immune potential of PDT by spatially packaging antigen as photosensitiser nanocarrier to trigger efficient immune cascade for photodynamic immunotherapy. The package of ovalbumin antigen (OVA) into sub-100 nm nano-assembly is realized by driving intermolecular disulfide network between OVA molecules. OVA nanoparticles loading photosensitiser Ce6 (ON) are subsequently coated with B16-OVA cancer cell membrane, resulting in membrane cloaked ON (MON). Importantly, laser irradiation generated ROS significantly potentiates OVA antigen cross-presentation efficiency. Whilst, MON is endowed with homophilic targeting towards tumor due to cancer cell membrane coating. In treating B16-OVA tumor-bearing mice, MON effectively triggers the immune cascade, completely eliminates the tumor under laser irradiation and provokes a long-term antitumor immune memory effect. Conversely, a marginal effect is found if substituting OVA for bovine serum protein (BSA) in nanoparticle design or using MON to treat non-OVA expressing tumor. The antigen nanocarrier design promises to complement conventional PDT by boosting immune cascade, thereby leading to unique photodynamic immunotherapy.


Asunto(s)
Nanopartículas , Fotoquimioterapia , Animales , Bovinos , Línea Celular Tumoral , Inmunoterapia , Ratones , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA