Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Clin Exp Immunol ; 13(1): 26-34, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496356

RESUMEN

NAA40 belongs to the N-terminal acetyltransferase (NATs) family, responsible for protein N-terminal modification, and it exerts crucial roles across various cancers. However, its impact on patient prognosis and immune infiltration in hepatocellular carcinoma (HCC) remains elusive. To address this, our study delved into the comprehensive analysis of NAA40 in the context of cancer. Our pan-cancer analysis unveiled elevated NAA40 expression in multiple tumor types, including BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC, STAD, and THCA. Additionally, through a comprehensive examination across various cancer types within TCGA, we discovered that high NAA40 gene expression correlated with poor prognosis in HCC, pointing toward its role in promoting oncogenesis. Further investigation illuminated the association of increased NAA40 expression with T stage, pathologic stage, tumor status, and histologic grade. Interestingly, we noted a significant inverse correlation between NAA40 expression and the infiltration levels of immune cells, such as DC cells, neutrophils, NK cells, and T cells, in liver cancer. This observation underpins the hypothesis that NAA40 influences HCC development by modulating immune cell infiltration. Functional enrichment analysis provided valuable insights into the pathways influenced by NAA40. Enriched pathways encompassed oxidative phosphorylation, xenobiotic metabolism, bile acid metabolism, fatty acid metabolism, G2M checkpoint, and E2F targets. These findings collectively position NAA40 as a potential biomarker for prognostic prediction and monitoring the effects of immunotherapy in HCC.

2.
J Cell Sci ; 136(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37013828

RESUMEN

Histone acetylation involves the addition of acetyl groups to specific amino acid residues. This chemical histone modification is broadly divided into two types - acetylation of the amino group found on the side chain of internal lysine residues (lysine acetylation) or acetylation of the α-amino group at the N-terminal amino acid residue (N-terminal acetylation). Although the former modification is considered a classic epigenetic mark, the biological importance of N-terminal acetylation has been mostly overlooked in the past, despite its widespread occurrence and evolutionary conservation. However, recent studies have now conclusively demonstrated that histone N-terminal acetylation impacts important cellular processes, such as controlling gene expression and chromatin function, and thus ultimately affecting biological phenotypes, such as cellular ageing, metabolic rewiring and cancer. In this Review, we provide a summary of the literature, highlighting current knowledge on the function of this modification, as well as allude to open questions we expect to be the focus of future research on histone N-terminal acetylation.


Asunto(s)
Histonas , Lisina , Histonas/metabolismo , Acetilación , Lisina/metabolismo , Cromatina , Procesamiento Proteico-Postraduccional
3.
BMC Biol ; 20(1): 22, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057804

RESUMEN

BACKGROUND: Epigenetic regulation relies on the activity of enzymes that use sentinel metabolites as cofactors to modify DNA or histone proteins. Thus, fluctuations in cellular metabolite levels have been reported to affect chromatin modifications. However, whether epigenetic modifiers also affect the levels of these metabolites and thereby impinge on downstream metabolic pathways remains largely unknown. Here, we tested this notion by investigating the function of N-alpha-acetyltransferase 40 (NAA40), the enzyme responsible for N-terminal acetylation of histones H2A and H4, which has been previously implicated with metabolic-associated conditions such as age-dependent hepatic steatosis and calorie-restriction-mediated longevity. RESULTS: Using metabolomic and lipidomic approaches, we found that depletion of NAA40 in murine hepatocytes leads to significant increase in intracellular acetyl-CoA levels, which associates with enhanced lipid synthesis demonstrated by upregulation in de novo lipogenesis genes as well as increased levels of diglycerides and triglycerides. Consistently, the increase in these lipid species coincide with the accumulation of cytoplasmic lipid droplets and impaired insulin signalling indicated by decreased glucose uptake. However, the effect of NAA40 on lipid droplet formation is independent of insulin. In addition, the induction in lipid synthesis is replicated in vivo in the Drosophila melanogaster larval fat body. Finally, supporting our results, we find a strong association of NAA40 expression with insulin sensitivity in obese patients. CONCLUSIONS: Overall, our findings demonstrate that NAA40 affects the levels of cellular acetyl-CoA, thereby impacting lipid synthesis and insulin signalling. This study reveals a novel path through which histone-modifying enzymes influence cellular metabolism with potential implications in metabolic disorders.


Asunto(s)
Histona Acetiltransferasas , Histonas , Acetiltransferasa D N-Terminal/metabolismo , Acetilcoenzima A/metabolismo , Animales , Drosophila melanogaster/metabolismo , Epigénesis Genética , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Insulina/metabolismo , Lípidos , Lipogénesis , Ratones
4.
Front Oncol ; 11: 691950, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150665

RESUMEN

Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-related mortality. In this study we initially interrogated the Cancer Genome Atlas (TCGA) dataset to determine the implication of N-terminal acetyltransferases (NATs), a family of enzymes that modify the N-terminus of the majority of eukaryotic proteins, in LIHC. This examination unveiled NAA40 as the NAT family member with the most prominent upregulation and significant disease prognosis for this cancer. Focusing on this enzyme, which selectively targets histone proteins, we show that its upregulation occurs from early stages of LIHC and is not specifically correlated with any established risk factors such as viral infection, obesity or alcoholic disease. Notably, in silico analysis of TCGA and other LIHC datasets found that expression of this epigenetic enzyme is associated with high proliferating, poorly differentiating and more aggressive LIHC subtypes. In particular, NAA40 upregulation was preferentially linked to mutational or non-mutational P53 functional inactivation. Accordingly, we observed that high NAA40 expression was associated with worse survival specifically in liver cancer patients with inactivated P53. These findings define NAA40 as a NAT with potentially oncogenic functions in LIHC and uncover its prognostic value for aggressive LIHC subtypes.

5.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916271

RESUMEN

The evolutionary conserved N-alpha acetyltransferase Naa40p is among the most selective N-terminal acetyltransferases (NATs) identified to date. Here we identified a conserved N-terminally truncated Naa40p proteoform named Naa40p25 or short Naa40p (Naa40S). Intriguingly, although upon ectopic expression in yeast, both Naa40p proteoforms were capable of restoring N-terminal acetylation of the characterized yeast histone H2A Naa40p substrate, the Naa40p histone H4 substrate remained N-terminally free in human haploid cells specifically deleted for canonical Naa40p27 or 237 amino acid long Naa40p (Naa40L), but expressing Naa40S. Interestingly, human Naa40L and Naa40S displayed differential expression and subcellular localization patterns by exhibiting a principal nuclear and cytoplasmic localization, respectively. Furthermore, Naa40L was shown to be N-terminally myristoylated and to interact with N-myristoyltransferase 1 (NMT1), implicating NMT1 in steering Naa40L nuclear import. Differential interactomics data obtained by biotin-dependent proximity labeling (BioID) further hints to context-dependent roles of Naa40p proteoforms. More specifically, with Naa40S representing the main co-translationally acting actor, the interactome of Naa40L was enriched for nucleolar proteins implicated in ribosome biogenesis and the assembly of ribonucleoprotein particles, overall indicating a proteoform-specific segregation of previously reported Naa40p activities. Finally, the yeast histone variant H2A.Z and the transcriptionally regulatory protein Lge1 were identified as novel Naa40p substrates, expanding the restricted substrate repertoire of Naa40p with two additional members and further confirming Lge1 as being the first redundant yNatA and yNatD substrate identified to date.


Asunto(s)
Acetiltransferasa D N-Terminal/metabolismo , Histonas/metabolismo , Humanos , Isoformas de Proteínas , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción
6.
Cancers (Basel) ; 12(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942614

RESUMEN

N-terminal acetylation (Nt-Ac) is an abundant eukaryotic protein modification, deposited in humans by one of seven N-terminal acetyltransferase (NAT) complexes composed of a catalytic and potentially auxiliary subunits. The involvement of NATs in cancers is being increasingly recognised, but a systematic cross-tumour assessment is currently lacking. To address this limitation, we conducted here a multi-omic data interrogation for NATs. We found that tumour genomic alterations of NATs or of their protein substrates are generally rare events, with some tumour-specific exceptions. In contrast, altered gene expression of NATs in cancers and their association with patient survival constitute a widespread cancer phenomenon. Examination of dependency screens revealed that (i), besides NAA60 and NAA80 and the NatA paralogues NAA11 and NAA16, the other ten NAT genes were within the top 80th percentile of the most dependent genes (ii); NATs act through distinct biological processes. NAA40 (NatD) emerged as a NAT with particularly interesting cancer biology and therapeutic potential, especially in liver cancer where a novel oncogenic role was supported by its increased expression in multiple studies and its association with patient survival. In conclusion, this study generated insights and data that will be of great assistance in guiding further research into the function and therapeutic potential of NATs in cancer.

7.
Epigenetics Chromatin ; 13(1): 29, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32680559

RESUMEN

Histone proteins are decorated with numerous post-(PTMs) or co-(CTMs) translational modifications mainly on their unstructured tails, but also on their globular domain. For many decades research on histone modifications has been focused almost solely on the biological role of modifications occurring at the side-chain of internal amino acid residues. In contrast, modifications on the terminal N-alpha amino group of histones-despite being highly abundant and evolutionarily conserved-have been largely overlooked. This oversight has been due to the fact that these marks were being considered inert until recently, serving no regulatory functions. However, during the past few years accumulating evidence has drawn attention towards the importance of chemical marks added at the very N-terminal tip of histones and unveiled their role in key biological processes including aging and carcinogenesis. Further elucidation of the molecular mechanisms through which these modifications are regulated and by which they act to influence chromatin dynamics and DNA-based processes like transcription is expected to enlighten our understanding of their emerging role in controlling cellular physiology and contribution to human disease. In this review, we clarify the difference between N-alpha terminal (Nt) and internal (In) histone modifications; provide an overview of the different types of known histone Nt-marks and the associated histone N-terminal transferases (NTTs); and explore how they function to shape gene expression, chromatin architecture and cellular phenotypes.


Asunto(s)
Código de Histonas , Histonas/metabolismo , Animales , Epigénesis Genética , Histonas/química , Humanos , Dominios Proteicos , Procesamiento Proteico-Postraduccional
8.
Apoptosis ; 21(3): 298-311, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26666750

RESUMEN

Protein N-terminal acetylation is an abundant post-translational modification in eukaryotes implicated in various fundamental cellular and biochemical processes. This modification is catalysed by evolutionarily conserved N-terminal acetyltransferases (NATs) whose deregulation has been linked to cancer development and thus, are emerging as useful diagnostic and therapeutic targets. Naa40 is a highly selective NAT that acetylates the amino-termini of histones H4 and H2A and acts as a sensor of cell growth in yeast. In the present study, we examine the role of Naa40 in cancer cell survival. We demonstrate that depletion of Naa40 in HCT116 and HT-29 colorectal cancer cells decreases cell survival by enhancing apoptosis, whereas Naa40 reduction in non-cancerous mouse embryonic fibroblasts has no effect on cell viability. Specifically, Naa40 knockdown in colon cancer cells activates the mitochondrial caspase-9-mediated apoptotic cascade. Consistent with this, we show that caspase-9 activation is required for the induced apoptosis because treatment of cells with an irreversible caspase-9 inhibitor impedes apoptosis when Naa40 is depleted. Furthermore, the effect of Naa40-depletion on cell-death is mediated through a p53-independent mechanism since p53-null HCT116 cells still undergo apoptosis upon reduction of the acetyltransferase. Altogether, these findings reveal an anti-apoptotic role for Naa40 and exhibit its potential as a therapeutic target in colorectal cancers.


Asunto(s)
Apoptosis/genética , Carcinogénesis/genética , Caspasa 9/metabolismo , Neoplasias Colorrectales/genética , Mitocondrias/metabolismo , Acetiltransferasa D N-Terminal/fisiología , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Inhibidores de Caspasas/farmacología , Supervivencia Celular , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HT29 , Histonas/metabolismo , Humanos , Ratones , Acetiltransferasa D N-Terminal/genética , Procesamiento Proteico-Postraduccional/genética , ARN Interferente Pequeño/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA