Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Pharmaceutics ; 16(8)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39204342

RESUMEN

High fat diets have been used as complementary treatments for seizure disorders for more than a century. Moreover, many fatty acids and derivatives, including the broad-spectrum antiseizure medication valproic acid, have been explored and used as pharmacological agents to treat epilepsy. In this work, we have explored the anticonvulsant potential of a large library of fatty acids and fatty acid derivatives, the LIPID MAPS Structure Database, using structure-based virtual screening to assess their ability to block the voltage-gated sodium channel 1.2 (NaV1.2), a validated target for antiseizure medications. Four of the resulting in silico hits were submitted for experimental confirmation using in vitro patch clamp experiments, and their protective role was evaluated in an acute mice seizure model, the Maximal Electroshock seizure model. These four compounds were found to protect mice against seizures. Two of them exhibited blocking effects on NaV1.2, CaV2.2, and CaV3.1.

2.
Adv Sci (Weinh) ; 11(29): e2400560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874331

RESUMEN

Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.


Asunto(s)
Endocitosis , Convulsiones , Animales , Ratones , Convulsiones/metabolismo , Convulsiones/genética , Endocitosis/fisiología , Endocitosis/genética , Ratones Transgénicos , Modelos Animales de Enfermedad , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Masculino , Ratones Noqueados
3.
Brain Sci ; 14(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38928545

RESUMEN

Epilepsy is a neurological disease that affects approximately 50 million people worldwide. Despite an existing abundance of antiepileptic drugs, lifelong disease treatment is often required but could be improved with alternative drugs that have fewer side effects. Given that epileptic seizures stem from abnormal neuronal discharges predominately modulated by the human sodium channel Nav1.2, the quest for novel and potent Nav1.2 blockers holds promise for epilepsy management. Herein, an in vivo approach was used to detect new antiepileptic compounds using the maximum electroshock test on mice. Pre-treatment of mice with extracts from the Ficus religiosa plant ameliorated the tonic hind limb extensor phase of induced convulsions. Subsequently, an in silico approach identified potential Nav1.2 blocking compounds from F. religiosa using a combination of computational techniques, including molecular docking, prime molecular mechanics/generalized Born surface area (MM/GBSA) analysis, and molecular dynamics (MD) simulation studies. The molecular docking and MM/GBSA analysis indicated that out of 82 compounds known to be present in F. religiosa, seven exhibited relatively strong binding affinities to Nav1.2 that ranged from -6.555 to -13.476 kcal/mol; similar or with higher affinity than phenytoin (-6.660 kcal/mol), a known Na+-channel blocking antiepileptic drug. Furthermore, MD simulations revealed that two compounds: 6-C-glucosyl-8-C-arabinosyl apigenin and pelargonidin-3-rhamnoside could form stable complexes with Nav1.2 at 300 K, indicating their potential as lead antiepileptic agents. In summary, the combination of in vivo and in silico approaches supports the potential of F. religiosa phytochemicals as natural antiepileptic therapeutic agents.

4.
Brain ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38939966

RESUMEN

SCN2A gene-related early-infantile developmental and epileptic encephalopathy (EI-DEE) is a rare and severe disorder that manifests in early infancy. SCN2A mutations affecting the fast inactivation gating mechanism can result in altered voltage dependence and incomplete inactivation of the encoded neuronal Nav1.2 channel and lead to abnormal neuronal excitability. In this study, we evaluated clinical data of seven missense Nav1.2 variants associated with DEE and performed molecular dynamics simulations, patch-clamp electrophysiology, and dynamic clamp real-time neuronal modelling to elucidate the molecular and neuron-scale phenotypic consequences of the mutations. The N1662D mutation almost completely prevented fast inactivation without affecting activation. The comparison of wild-type and N1662D channel structures suggested that the ambifunctional hydrogen bond formation between residues N1662 and Q1494 is essential for fast inactivation. Fast inactivation could also be prevented with engineered Q1494A or Q1494L Nav1.2 channel variants, whereas Q1494E or Q1494 K variants resulted in incomplete inactivation and persistent current. Molecular dynamics simulations revealed a reduced affinity of the hydrophobic IFM-motif to its receptor site with N1662D and Q1494L variants relative to wild-type. These results demonstrate that the interactions between N1662 and Q1494 underpin the stability and the orientation of the inactivation gate and are essential for the development of fast inactivation. Six DEE-associated Nav1.2 variants, with mutations mapped to channel segments known to be implicated in fast inactivation were also evaluated. Remarkably, the L1657P variant also prevented fast inactivation and produced biophysical characteristics that were similar to those of N1662D, whereas the M1501 V, M1501T, F1651C, P1658S, and A1659 V variants resulted in biophysical properties that were consistent with gain-of-function and enhanced action potential firing of hybrid neurons in dynamic action potential clamp experiments. Paradoxically, low densities of N1662D or L1657P currents potentiated action potential firing, whereas increased densities resulted in sustained depolarization. Our results provide novel structural insights into the molecular mechanism of Nav1.2 channel fast inactivation and inform treatment strategies for SCN2A-related EI-DEE. The contribution of non-inactivating Nav1.2 channels to neuronal excitability may constitute a distinct cellular mechanism in the pathogenesis of SCN2A-related DEE.

5.
Brain ; 147(8): 2761-2774, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651838

RESUMEN

SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Fenotipo , Humanos , Canal de Sodio Activado por Voltaje NAV1.2/genética , Femenino , Masculino , Preescolar , Niño , Lactante , Adolescente , Epilepsia/genética , Adulto , Adulto Joven , Mutación , Trastorno Autístico/genética , Índice de Severidad de la Enfermedad
6.
Cancers (Basel) ; 16(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672656

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the most common histological form of head and neck tumors (HNTs), which originate from the epithelium of the lips and oral cavity, pharynx, larynx, salivary glands, nasal cavity, and sinuses. The main risk factors include consumption of tobacco in all forms and alcohol, as well as infections with high-risk human papillomaviruses or the Epstein-Barr virus. Regardless of the etiological agent, the risk of developing different types of HNTs is from two to more than six times higher in males than in females. The reason for such disparities probably lies in a combination of both biological and psychosocial factors. Therefore, it is hypothesized that exposure to female sex hormones, primarily estrogen, provides women with protection against the formation and metastasis of HNTs. In this review, we synthesized available knowledge on the role of estrogen and estrogen receptors (ERs) in the development and progression of HNTs, with special emphasis on membrane ERs, which are much less studied. We can summarize that in addition to epidemiologic studies unequivocally pointing to the protective effect of estrogen in women, an increased expression of both nuclear ERs, ERα, and ERß, and membrane ERs, ERα36, GPER1, and NaV1.2, was present in different types of HNSCC, for which anti-estrogens could be used as an effective therapeutic approach.

7.
Mol Neurobiol ; 61(2): 622-634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37650965

RESUMEN

Numerous pathogenic variants of SCN2A gene, encoding voltage-gated sodium channel α2 subunit Nav1.2 protein, have been identified in a wide spectrum of neuropsychiatric disorders including schizophrenia. However, pathological mechanisms for the schizophrenia-relevant behavioral abnormalities caused by the variants remain poorly understood. Here in this study, we characterized mouse lines with selective Scn2a deletion at schizophrenia-related brain regions, medial prefrontal cortex (mPFC) or ventral tegmental area (VTA), obtained by injecting adeno-associated viruses (AAV) expressing Cre recombinase into homozygous Scn2a-floxed (Scn2afl/fl) mice, in which expression of the Scn2a was locally deleted in the presence of Cre recombinase. The mice lacking Scn2a in the mPFC exhibited a tendency for a reduction in prepulse inhibition (PPI) in acoustic startle response. Conversely, the mice lacking Scn2a in the VTA showed a significant increase in PPI. We also found that the mice lacking Scn2a in the mPFC displayed increased sociability, decreased locomotor activity, and increased anxiety-like behavior, while the mice lacking Scn2a in the VTA did not show any other abnormalities in these parameters except for vertical activity which is one of locomotor activities. These results suggest that Scn2a-deficiencies in mPFC and VTA are inversely relevant for the schizophrenic phenotypes in patients with SCN2A variants.


Asunto(s)
Inhibición Prepulso , Reflejo de Sobresalto , Ratones , Humanos , Animales , Área Tegmental Ventral/fisiología , Corteza Prefrontal/metabolismo , Acústica
8.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961213

RESUMEN

Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical neuron model from a male donor. While microglia play an important role in the brain, these cells originate from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture. To study how microglia respond to diseased neurons and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered morphology with increased branch length and enhanced calcium signal when co-cultured with neurons carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.

9.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333275

RESUMEN

Pathogenic variants in SCN2A are associated with a range of neurodevelopmental disorders (NDD). Despite being largely monogenic, SCN2A-related NDD show considerable phenotypic variation and complex genotype-phenotype correlations. Genetic modifiers can contribute to variability in disease phenotypes associated with rare driver mutations. Accordingly, different genetic backgrounds across inbred rodent strains have been shown to influence disease-related phenotypes, including those associated with SCN2A-related NDD. Recently, we developed a mouse model of the variant SCN2A-p.K1422E that was maintained as an isogenic line on the C57BL/6J (B6) strain. Our initial characterization of NDD phenotypes in heterozygous Scn2aK1422E mice revealed alterations in anxiety-related behavior and seizure susceptibility. To determine if background strain affects phenotype severity in the Scn2aK1422E mouse model, phenotypes of mice on B6 and [DBA/2J×B6]F1 hybrid (F1D2) strains were compared. Convergent evidence from neurobehavioral assays demonstrated lower anxiety-like behavior in Scn2aK1422E mice compared to wild-type and further suggested that this effect is more pronounced on the B6 background compared to the F1D2 background. Although there were no strain-dependent differences in occurrence of rare spontaneous seizures, response to the chemoconvulsant kainic acid revealed differences in seizure generalization and lethality risk, with variation based on strain and sex. Continued examination of strain-dependent effects in the Scn2aK1422E mouse model could reveal genetic backgrounds with unique susceptibility profiles that would be relevant for future studies on specific traits and enable the identification of highly penetrant phenotypes and modifier genes that could provide clues about the primary pathogenic mechanism of the K1422E variant.

10.
Cell Rep ; 42(6): 112563, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37267104

RESUMEN

It is challenging to apply traditional mutational scanning to voltage-gated sodium channels (NaVs) and functionally annotate the large number of coding variants in these genes. Using a cytosine base editor and a pooled viability assay, we screen a library of 368 guide RNAs (gRNAs) tiling NaV1.2 to identify more than 100 gRNAs that change NaV1.2 function. We sequence base edits made by a subset of these gRNAs to confirm specific variants that drive changes in channel function. Electrophysiological characterization of these channel variants validates the screen results and provides functional mechanisms of channel perturbation. Most of the changes caused by these gRNAs are classifiable as loss of function along with two missense mutations that lead to gain of function in NaV1.2 channels. This two-tiered strategy to functionally characterize ion channel protein variants at scale identifies a large set of loss-of-function mutations in NaV1.2.


Asunto(s)
Edición Génica , Canal de Sodio Activado por Voltaje NAV1.2 , Canales de Sodio Activados por Voltaje , Edición Génica/métodos , Mutagénesis/genética , Mutación , Mutación Missense/genética
11.
Pharmacol Rep ; 75(3): 746-752, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36914846

RESUMEN

BACKGROUND: Atomoxetine (ATX), a norepinephrine reuptake inhibitor (NRI), is used to attenuate the symptoms of Attention Deficit/Hyperactivity Disorder (AD/HD) by increasing neurotransmitter concentrations at the synaptic cleft. Although Nav1.2 voltage-gated sodium channels (VGSCs) are thought to play a role in monoamine transmitter release in the synaptic junction, it is unclear how atomoxetine affects Nav1.2 VGSCs. METHODS: In this study, we investigated the effect of ATX on Nav1.2 VGSC-transfected HEK293 cells with the whole-patch clamp technique. RESULTS: Nav1.2 VGSC current decreased by 51.15 ± 12.75% under treatment with 50 µM ATX in the resting state (holding membrane potential at - 80 mV). The IC50 of ATX against Nav1.2 VGSC current was 45.57 µM. The activation/inactivation curve of Nav1.2 VGSC currents was shifted toward hyperpolarization by 50 µM ATX. In addition, the inhibitory effect of ATX increased with membrane depolarization (holding membrane potential at - 50 mV) and its IC50 was 10.16 µM. Moreover, ATX showed the time-dependent interaction in the inactivation state. CONCLUSION: These findings suggest that ATX interacts with Nav1.2 VGSCs producing the inhibition of current and the modification of kinetic properties in the state-dependent manner.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2 , Humanos , Clorhidrato de Atomoxetina/farmacología , Células HEK293 , Potenciales de la Membrana
12.
J Physiol ; 601(10): 1957-1979, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36946031

RESUMEN

In neocortical layer-5 pyramidal neurons, the action potential (AP) is generated in the axon initial segment (AIS) when the membrane potential (Vm ) reaches the threshold for activation of the voltage-gated Na+ channels (VGNCs) Nav 1.2 and Nav 1.6. Yet, whereas these VGNCs are known to differ in spatial distribution along the AIS and in biophysical properties, our understanding of the functional differences between the two channels remains elusive. Here, using ultrafast Na+ , Vm and Ca2+ imaging in combination with partial block of Nav 1.2 by the peptide G1 G4 -huwentoxin-IV, we demonstrate an exclusive role of Nav 1.2 in shaping the generating AP. Precisely, we show that selective block of ∼30% of Nav 1.2 widens the AP in the distal part of the AIS and we demonstrate that this effect is due to a loss of activation of BK Ca2+ -activated K+ channels (CAKCs). Indeed, Ca2+ influx via Nav 1.2 activates BK CAKCs, determining the amplitude and the early phase of repolarization of the AP in the AIS. By using control experiments using 4,9-anhydrotetrodotoxin, a moderately selective inhibitor of Nav 1.6, we concluded that the Ca2+ influx shaping the early phase of the AP is exclusive of Nav 1.2. Hence, we mimicked this result with a neuron model in which the role of the different ion channels tested reproduced the experimental evidence. The exclusive role of Nav 1.2 reported here is important for understanding the physiology and pathology of neuronal excitability. KEY POINTS: We optically analysed the action potential generated in the axon initial segment of mouse layer-5 neocortical pyramidal neurons and its associated Na+ and Ca2+ currents using ultrafast imaging techniques. We found that partial selective block of the voltage-gated Na+ channel Nav 1.2, produced by a recently developed peptide, widens the shape of the action potential in the distal part of the axon initial segment. We demonstrate that this effect is due to a reduction of the Ca2+ influx through Nav 1.2 that activates BK Ca2+ -activated K+ channels. To validate our conclusions, we generated a neuron model that reproduces the ensemble of our experimental results. The present results indicate a specific role of Nav 1.2 in the axon initial segment for shaping of the action potential during its generation.


Asunto(s)
Segmento Inicial del Axón , Ratones , Animales , Segmento Inicial del Axón/fisiología , Potenciales de Acción/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio , Células Piramidales/fisiología , Péptidos/farmacología
13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-992166

RESUMEN

Epilepsy is a disorder of the brain charac-terized by abnormal neuron excitability.However,the underlying molecular mechanism of neuron excitability modulation remains elusive.With the help of bioinformatic methods,we have identified receptor-type tyrosine-pro-tein phosphatase-like N(PTPRN)as a critical gene dur-ing epileptogenesis.PTPRN recruits NEDD4L ubiquitin E3 ligase to NaV1.2 sodium channels,facilitating NEDD4L-mediated ubiquitination and endocytosis.Knockout of PTPRN endows hippocampal granule cells with augmented depolarization currents and higher intrinsic excitability,which is reflected by increased seizure susceptibility of transgenic mice.On the contrary,reduced neuron excit-ability and decreased seizure susceptibility are observed after PTPRN overexpression.Meanwhile,we find that a 133 aa fragment recaptures modulation effect of PTPRN full-length,and this fragment shows therapeutic potential towards epilepsy caused by NaV1.2 gain of function vari-ants.In brief,our results demonstrate PTPRN playsa criti-calroleinregulatingneuronexcitability,providing a poten-tial therapeutic approach for epilepsy.

14.
Neuron ; 110(13): 2110-2123.e4, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35508174

RESUMEN

Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.


Asunto(s)
Retina , Células Ganglionares de la Retina , Potenciales de Acción/fisiología , Animales , Ratones , Retina/fisiología , Células Ganglionares de la Retina/fisiología
15.
J Neurophysiol ; 127(5): 1388-1397, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417276

RESUMEN

SCN2A encodes a voltage-gated sodium channel (NaV1.2) expressed throughout the central nervous system in predominantly excitatory neurons. Pathogenic variants in SCN2A are associated with epilepsy and neurodevelopmental disorders. Genotype-phenotype correlations have been described, with loss-of-function variants typically being associated with neurodevelopmental delay and later-onset seizures, whereas gain-of-function variants more often result in early infantile-onset epilepsy. However, the true electrophysiological effects of most disease-causing SCN2A variants have yet to be characterized. We report an infant who presented with migrating focal seizures in the neonatal period. She was found to have a mosaic c.2635G>A, p.Gly879Arg variant in SCN2A. Voltage-clamp studies of the variant expressed on adult and neonatal NaV1.2 isoforms demonstrated a mixed gain and loss of function, with predominantly a loss-of-function effect with reduced cell surface expression and current density. Additional small electrophysiological alterations included a decrease in the voltage dependence of activation and an increase in the voltage dependence of inactivation. This finding of a predominantly loss-of-function effect was unexpected, as the infant's early epilepsy onset would have suggested a predominantly gain-of-function effect. This case illustrates that our understanding of genotype-phenotype correlations is still limited and highlights the complexity of the underlying electrophysiological effects of SCN2A variants.NEW & NOTEWORTHY Voltage-gated sodium channels play an important role in the central nervous system, mutations in which have been reported to be responsible for epilepsy. We report here an infant presenting with epilepsy of infancy with migrating focal seizures (EIMFS) in the neonatal period with a mosaic c.2635G>A, resulting in a p.Gly879Arg missense mutation on the SCN2A gene encoding NaV1.2 sodium channels. Biophysical characterization of this variant revealed a mixture of gain- and loss-of-function effects.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Epilepsia/genética , Femenino , Humanos , Lactante , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Fenotipo , Convulsiones/genética
16.
Artículo en Inglés | MEDLINE | ID: mdl-35310859

RESUMEN

Epilepsy is one of the most common neurological diseases. Epileptic individuals are faced with seizures, which are largely caused by enhanced neuronal excitability and/or decreased neuronal inhibitory activity. SCN2A encodes a neuronal voltage-gated sodium channel, NaV1.2 that is primarily found in excitatory neurons throughout the brain. NaV1.2 is most concentrated within the principal neurons of the corticostriatal circuit, which includes pyramidal neurons in the medial prefrontal cortex and medium spiny neurons in the striatum. In the early stage of adult development, the NaV1.2 channel plays critical roles in generation and propagation of action potentials in these neurons. Gain of Function variants of SCN2A results in unprovoked seizures and epilepsy, while loss-of-function variants of SCN2A is a leading cause for autism spectrum disorder as well as intellectual disability. Previous studies have shown that full deletion of Scn2a gene in mice is lethal and partial disruption of Scn2a gene (less than 50%) leads to inhibition of neuronal excitability. A recent study from Dr. Yang's laboratory revealed an unexpected result from mice with severe NaV1.2 deficiency and they demonstrated that severe deletion of Scn2a gene (around 68% gene disruption) in NaV1.2 triggers neuronal hyperexcitability in adult mice. Their findings may explain the puzzling clinical observation that certain individuals with NaV1.2 deficiency still develop unprovoked seizure. With the knowledge that using sodium-channel blockers simply exacerbates the seizure, the need for understanding the intrinsic nature of the NaV1.2 channel provides an important research topic in the future.

17.
Neurobiol Dis ; 168: 105690, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35301122

RESUMEN

Autism spectrum disorder (ASD) affects ~2% of the population in the US, and monogenic forms of ASD often result in the most severe manifestation of the disorder. Recently, SCN2A has emerged as a leading gene associated with ASD, of which abnormal sleep pattern is a common comorbidity. SCN2A encodes the voltage-gated sodium channel NaV1.2. Predominantly expressed in the brain, NaV1.2 mediates the action potential firing of neurons. Clinical studies found that a large portion of children with SCN2A deficiency have sleep disorders, which severely impact the quality of life of affected individuals and their caregivers. The underlying mechanism of sleep disturbances related to NaV1.2 deficiency, however, is not known. Using a gene-trap Scn2a-deficient mouse model (Scn2atrap), we found that Scn2a deficiency results in increased wakefulness and reduced non-rapid-eye-movement (NREM) sleep. Brain region-specific Scn2a deficiency in the suprachiasmatic nucleus (SCN) containing region, which is involved in circadian rhythms, partially recapitulates the sleep disturbance phenotypes. At the cellular level, we found that Scn2a deficiency disrupted the firing pattern of spontaneously firing neurons in the SCN region. At the molecular level, RNA-sequencing analysis revealed differentially expressed genes in the circadian entrainment pathway including core clock genes Per1 and Per2. Performing a transcriptome-based compound discovery, we identified dexanabinol (HU-211), a putative glutamate receptor modulator, that can partially reverse the sleep disturbance in mice. Overall, our study reveals possible molecular and cellular mechanisms underlying Scn2a deficiency-related sleep disturbances, which may inform the development of potential pharmacogenetic interventions for the affected individuals.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Animales , Trastorno del Espectro Autista/genética , Ritmo Circadiano , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Calidad de Vida , Sueño
18.
Neurosci Res ; 177: 145-150, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34808247

RESUMEN

Unmyelinated fibers in the central nervous system are known to exist in hippocampal mossy fibers, cerebellar parallel fibers and striatal projection fibers. Previously, we and others reported diffuse distribution of Nav1.2, a voltage-gated sodium channel α-subunit encoded by the SCN2A gene, on unmyelinated striatal projection fibers. Mutations in the SCN2A gene are associated with epilepsies and autism. In this study, we investigated the distribution of Nav1.2 on the unmyelinated fibers in the corpus callosum and stria terminalis by immunohistochemistry and immunoelectron microscopy analysis, suggesting that diffuse localization of Nav1.2 on mid-axonal regions can be a useful marker for unmyelinated fibers.


Asunto(s)
Axones , Canales de Sodio Activados por Voltaje , Axones/fisiología , Sistema Nervioso Central , Inmunohistoquímica , Canal de Sodio Activado por Voltaje NAV1.2
19.
Cell Rep ; 36(5): 109483, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348157

RESUMEN

Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20%-30% of children with these variants also suffer from epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic-clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may, therefore, account for why SCN2A loss-of-function can paradoxically promote seizure.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neocórtex/citología , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Dendritas/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Neurochem Res ; 46(3): 523-534, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33394222

RESUMEN

Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.


Asunto(s)
Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Trastorno Autístico/genética , Calmodulina/química , Humanos , Simulación del Acoplamiento Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA