Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430545

RESUMEN

Autonomous vehicles require efficient self-localisation mechanisms and cameras are the most common sensors due to their low cost and rich input. However, the computational intensity of visual localisation varies depending on the environment and requires real-time processing and energy-efficient decision-making. FPGAs provide a solution for prototyping and estimating such energy savings. We propose a distributed solution for implementing a large bio-inspired visual localisation model. The workflow includes (1) an image processing IP that provides pixel information for each visual landmark detected in each captured image, (2) an implementation of N-LOC, a bio-inspired neural architecture, on an FPGA board and (3) a distributed version of N-LOC with evaluation on a single FPGA and a design for use on a multi-FPGA platform. Comparisons with a pure software solution demonstrate that our hardware-based IP implementation yields up to 9× lower latency and 7× higher throughput (frames/second) while maintaining energy efficiency. Our system has a power footprint as low as 2.741 W for the whole system, which is up to 5.5-6× less than what Nvidia Jetson TX2 consumes on average. Our proposed solution offers a promising approach for implementing energy-efficient visual localisation models on FPGA platforms.

2.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37112504

RESUMEN

Nowadays, Brain-Computer Interfaces (BCIs) still captivate large interest because of multiple advantages offered in numerous domains, explicitly assisting people with motor disabilities in communicating with the surrounding environment. However, challenges of portability, instantaneous processing time, and accurate data processing remain for numerous BCI system setups. This work implements an embedded multi-tasks classifier based on motor imagery using the EEGNet network integrated into the NVIDIA Jetson TX2 card. Therefore, two strategies are developed to select the most discriminant channels. The former uses the accuracy based-classifier criterion, while the latter evaluates electrode mutual information to form discriminant channel subsets. Next, the EEGNet network is implemented to classify discriminant channel signals. Additionally, a cyclic learning algorithm is implemented at the software level to accelerate the model learning convergence and fully profit from the NJT2 hardware resources. Finally, motor imagery Electroencephalogram (EEG) signals provided by HaLT's public benchmark were used, in addition to the k-fold cross-validation method. Average accuracies of 83.7% and 81.3% were achieved by classifying EEG signals per subject and motor imagery task, respectively. Each task was processed with an average latency of 48.7 ms. This framework offers an alternative for online EEG-BCI systems' requirements, dealing with short processing times and reliable classification accuracy.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Algoritmos , Imágenes en Psicoterapia , Programas Informáticos
3.
Front Plant Sci ; 13: 850606, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463441

RESUMEN

A high resolution dataset is one of the prerequisites for tea chrysanthemum detection with deep learning algorithms. This is crucial for further developing a selective chrysanthemum harvesting robot. However, generating high resolution datasets of the tea chrysanthemum with complex unstructured environments is a challenge. In this context, we propose a novel tea chrysanthemum - generative adversarial network (TC-GAN) that attempts to deal with this challenge. First, we designed a non-linear mapping network for untangling the features of the underlying code. Then, a customized regularization method was used to provide fine-grained control over the image details. Finally, a gradient diversion design with multi-scale feature extraction capability was adopted to optimize the training process. The proposed TC-GAN was compared with 12 state-of-the-art generative adversarial networks, showing that an optimal average precision (AP) of 90.09% was achieved with the generated images (512 × 512) on the developed TC-YOLO object detection model under the NVIDIA Tesla P100 GPU environment. Moreover, the detection model was deployed into the embedded NVIDIA Jetson TX2 platform with 0.1 s inference time, and this edge computing device could be further developed into a perception system for selective chrysanthemum picking robots in the future.

4.
Sensors (Basel) ; 19(2)2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30642014

RESUMEN

Detection and classification of road markings are a prerequisite for operating autonomous vehicles. Although most studies have focused on the detection of road lane markings, the detection and classification of other road markings, such as arrows and bike markings, have not received much attention. Therefore, we propose a detection and classification method for various types of arrow markings and bike markings on the road in various complex environments using a one-stage deep convolutional neural network (CNN), called RetinaNet. We tested the proposed method in complex road scenarios with three open datasets captured by visible light camera sensors, namely the Malaga urban dataset, the Cambridge dataset, and the Daimler dataset on both a desktop computer and an NVIDIA Jetson TX2 embedded system. Experimental results obtained using the three open databases showed that the proposed RetinaNet-based method outperformed other methods for detection and classification of road markings in terms of both accuracy and processing time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA