Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37150, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296209

RESUMEN

Bangladesh stands third in global rice production while complete modernization of rice production is not fully enforced. The boon of nano agriculture might circumvent the challenge of increasing the yield with minimal ecological damage. Nanofertilizer might be one of the solutions to address the problem of modern agriculture confronting environmental hazards owing to the excessive use of synthetic fertilizers by farmers in Bangladesh. We synthesized nanourea by chemical co-precipitation (CP) and hydrothermal (HT) methods in an attempt to develop environmentally friendly nanofertilizers. We characterized the nanourea and confirmed the functionalization of nanohydroxyapatite (nHAP) with urea by scanning transmission electron microscopy (STEM)/EDS mapping. The CP method produced particle dimensions of 45.62 nm for length and 14.16 nm for width. In comparison, the readings obtained through the HT method were around 74.69 nm and 20.44 nm for length and width, respectively. The field application of nanourea demonstrated impressive results, indicating a significant relationship between the particle size of nanourea and its impact on several agricultural factors. The grain yield using traditional synthetic fertilizer (urea) ranged from 6.47 to 6.52 t ha-1 with a very low NUE of 35.8-36.34 %. Contrarily, the grain yield was found from 6.52 to 6.84 t ha-1 and the obtained NUE ranged from 57.58 to 71.0 % using nanourea of the same concentration calibrated with traditional urea by two methods. Additionally, nanourea treatments having 25 % less nitrogen (N) provided higher total N (TN) in grain suggesting possible nutritional enrichment while checking the yield penalty and substantial increase in N use efficiency (NUE). However, further upscaling of this research on a field scale is necessary to confirm the findings.

2.
J Environ Manage ; 367: 121960, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111009

RESUMEN

Substituting mineral fertilizer with manure or a combination of organic amendments plus beneficial soil microorganisms (bio-manure) in agriculture is a standard practice to mitigate N2O and NO emissions while enhancing crop performance and nitrogen use efficiency (NUE). Here, we conducted a greenhouse trial for three consecutive vegetable growth seasons for Spinach, Coriander herb, and Baby bok choy to reveal the response of N2O and NO emissions, NUE, and vegetable quality index (VQI) to fertilization strategies. Strategies included solely chemical nitrogen fertilizer (CN), 20 (M1N4) and 50% (M1N1) substitution with manure, 20 (BM1N4) and 50% (BM1N1) substitution with bio-manure, and no fertilization as a control and were organized in a completely randomized design (n = 3). Manure decreased N2O emissions by 24-45% and bio-manure by 44-53% compared to CN. Manure reduced NO emissions by 28-41% and bio-manure by 55-63%. Bio-manure increased NUE by 0.04-31% and yields by 0.05-61% while improving VQI, attributed to yield growth and reduced vegetable NO3- contents. Improvement of root growth was the main factor that explained the rise of NUE; NUE declined with the increase of N2O emissions, showing the loss of vegetable performance under conditions when denitrification processes prevailed. Under the BM1N1, the highest VQI and the lowest yield-scaled N-oxide emissions were observed, suggesting that substitution with bio-manure can improve vegetable quality and mitigate N-oxide emissions. These findings indicate that substituting 50% of mineral fertilizer with bio-manure can effectively improve NUE and VQI and mitigate N-oxides in intensive vegetable production.


Asunto(s)
Fertilizantes , Estiércol , Nitrógeno , Suelo , Verduras , Verduras/crecimiento & desarrollo , Nitrógeno/metabolismo , Fertilizantes/análisis , Suelo/química , Agricultura/métodos , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo
3.
Ecotoxicol Environ Saf ; 284: 116916, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39181078

RESUMEN

Potatoes (Solanum tuberosum L.) are the third largest food crop globally and are pivotal for global food security. Widespread N fertilizer waste in potato cultivation has caused diverse environmental issues. This study employed microbial metagenomic sequencing to analyze the causes behind the declining N use efficiency (NUE) and escalating greenhouse gas emissions resulting from excessive N fertilizer application. Addressing N fertilizer inefficiency through breeding has emerged as a viable solution for mitigating overuse in potato cultivation. In this study, transcriptome and metabolome analyses were applied to identify N fertilizer-responsive genes. Metagenomic sequencing revealed that excessive N fertilizer application triggered alterations in the population dynamics of 11 major bacterial phyla, consequently affecting soil microbial functions, particularly N metabolism pathways and bacterial secretion systems. Notably, the enzyme levels associated with NO3- increased, and those associated with NO and N2O increased. Furthermore, excessive N fertilizer application enhanced soil virulence factors and increased potato susceptibility to diseases. Transcriptome and metabolome sequencing revealed significant impacts of excessive N fertilizer use on lipid and amino acid metabolism pathways. Weighted gene co­expression network analysis (WGCNA) was adopted to identify two genes associated with N fertilizer response: PGSC0003DMG400021157 and PGSC0003DMG400009544.

4.
J Environ Manage ; 366: 121746, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986375

RESUMEN

Mismanagement of the nitrogen (N) fertilization in agriculture leads to low N use efficiency (NUE) and therefore pollution of waters and atmosphere due to NO3- leaching, and N2O and NH3 emissions. The use of N simulation models of the soil-plant system can help improve the N fertilizer management increasing NUE and decreasing N pollution issues. However, many N simulation models lack balance between complexity and uncertainty with the result that they are not applied in actual practice. The NITIRSOIL is a one-dimensional transient-state model with a monthly time step that aims at addressing this lack in the estimation of, mainly, dry matter yield (DMY), crop N uptake (Nupt), soil mineral N (Nmin), and NO3- leaching in agricultural fields. According to its global sensitivity analysis for horticulture, the NITIRSOIL simulations of the aforementioned outputs mostly depend on the critical N dilution curve, harvest index, dry matter fraction, potential fresh yield and nitrification coefficients. According to its validation for 35 nitrogen fertilization trials with 11 vegetables under semi-arid Mediterranean climate in Eastern Spain, the NITIRSOIL presents indices of agreement between 0.87 and 0.97 for the prediction of total dry matter, DMY, Nupt, NO3- leaching and soil Nmin at crop season end. Therefore, the NITIRSOIL model can be used in actual practice to improve the sustainability of the N management in, particularly horticulture, due to the balance it features between complexity and prediction uncertainty. For this aim, the NITRISOIL can be used either on its own, or in combination with "Nmin" on-site N fertilization recommendation methods, or even could be implemented as the calculation core of decision support systems.


Asunto(s)
Agricultura , Fertilizantes , Nitrógeno , Suelo , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Agricultura/métodos , Incertidumbre , Suelo/química , Modelos Teóricos
5.
Sci Total Environ ; 949: 174859, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053548

RESUMEN

The world's top ten Organic Farming (OF) countries by converted area include several Mediterranean countries, including Spain. Despite this, little is known about the consequences of OF on crop production and environmental sustainability in this country. In this article, we conduct an agronomic analysis of Spanish considerable conversion rate to OF, which tends to concentrate in certain provinces and crops. Indeed, in the case of various crops and in several provinces, the organic share of total agricultural land exceeds 20-30 %. This concentration makes it possible to compare information obtained from farmers through interviews and provincial statistical information. The study data consisted of information collected from interviews of a representative sample of organic farmers conducted in 2004 and 2020 as well as official statistical information. The results showed that no yield gap between OF and conventional farming was found for vegetables and fruit trees, while it showed an increasing trend in arable crops. Presumably, the reason is that fruit trees and vegetables generate and incorporate high levels of carbon (C) flows into the soil and have a low land cost per unit of incorporated nitrogen (N) (or can be paid for), allowing to meet crop needs and to increase soil organic matter (SOM). Conversely, in the case of rainfed arable crops, the soil C and N inputs are deficient due to the low crop residues and the high land cost of N. Consequently, SOM destruction and N deficit progressively broaden the yield gap, undermining the agroecosystem sustainability. To reverse the situation, among other measures, it is necessary to implement agricultural policies designed to make rotations with high legume ratios viable and to plant varieties presenting higher production of residues and roots, such as traditional varieties.


Asunto(s)
Carbono , Productos Agrícolas , Nitrógeno , Agricultura Orgánica , España , Nitrógeno/análisis , Carbono/análisis , Agricultura Orgánica/métodos , Suelo/química , Agricultura/métodos , Conservación de los Recursos Naturales/métodos , Producción de Cultivos/métodos
6.
Int J Biol Macromol ; 274(Pt 2): 133320, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950798

RESUMEN

The increasing urge to make an impactful contribution towards attaining nutritional security amidst the ever-rising demand for food, changing climate and maintaining environmental health and safety has become the main focal point for today's researchers globally. Slow-release fertilizers (SRFs) are a broad, dynamic, and advance category of fertilizers but despite its environmental benefits and scientifically proven results it often faces some critical challenges, primarily due to its high cost, often stemming from synthetic coatings, deteriorating soil health and with unrevealed potential environmental impacts. Organo-monomers have gained immense popularity due to their organic origin, biodegradable nature, biocompatibility, bio-sustainability and as a targeted delivery of nutrients in the plant system leading to increase in nutrient use efficiency (NUE). They can form strong bond with other monomers, fertilizers elements and improve the soil quality, carbon sequestration and holistically the environment. This review emphasizes on organo-monomers based SRFs, its synthesis, application and deliberate mechanism of nutrient release; boosting crop productivity and global economy. In conclusion, provided the significant challenges posed by the classical or synthetically coated fertilizers; the application of organo-monomers based SRFs demonstrates immense potential for achieving sustainable yield, to help build a global nutritionally secure population.


Asunto(s)
Preparaciones de Acción Retardada , Fertilizantes , Suelo/química
7.
Sci Rep ; 14(1): 15027, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951138

RESUMEN

Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.


Asunto(s)
Nitrificación , Nitrógeno , Raíces de Plantas , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Microbiología del Suelo , Nitratos/metabolismo , Plantas/metabolismo , Compuestos de Amonio/metabolismo , Suelo/química , Rizosfera , Fertilizantes
8.
Gene ; 927: 148715, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909967

RESUMEN

As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.


Asunto(s)
Fertilizantes , Genómica , Nitrógeno , Oryza , Fitomejoramiento , Oryza/genética , Oryza/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento/métodos , Genómica/métodos , Agricultura/métodos
9.
Front Plant Sci ; 15: 1369015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756965

RESUMEN

Proper nutrient management is crucially important to the sustainable development of tea production. Compared to normal green-leaf cultivars, albino tea cultivars produce green tea of superior quality characterized by high contents of amino acids as a result of the hydrolysis of chloroplast proteins at albinism. However, the advantage of albino tea cultivars was offset by inferior growth and yield performance because of low contents of chlorophylls and limited photosynthesis capacity. Our understanding about the nutrition characteristics of albino tea cultivars was very limited. A four-year field experiment was conducted to develop proper nutrient management for Baiye-1 to overcome its weakness of low productivity without a tradeoff in tea quality and environmental risks. The nutrient management schemes were formulated by optimizing the rate and ratio of nitrogen (N), phosphorus, potassium and magnesium together with substitution of chemical fertilizers with organic manures. The total amounts of nutrients in the optimized schemes were reduced by 25% compared to the local farmers' practice (FP). Results showed that optimized rates and ratio of nutrients together with partial substitution of chemical fertilizers with rapeseed cake manure more considerably improved albino tea yield, the contents of free amino acids, total polyphenol and catechins relative to FP. Partial substitution of chemical fertilizers with commercial livestock manure decreased tea quality, which was likely caused by a dilution effect of increasing tea yield and decreasing N status of tea plants. Full organic substitution of chemical fertilizers by rapeseed cake manure improved tea yield and quality but had relatively low agronomic efficiency and profit. The effect of optimized nutrient management schemes was associated with the improvement of nutritional status in tea plants. The present work demonstrated that the optimization of nutrient management considerably improved albino tea yield, quality and profit while decreased the application rate of fertilizers and the intensity of greenhouse gas emissions.

10.
Cell Rep ; 43(5): 114150, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678565

RESUMEN

Seed size is controlled not only by intrinsic genetic factors but also by external environmental signals. Here, we report a major quantitative trait locus (QTL) gene for seed size and weight on chromosome 1 (SSW1) in Arabidopsis, and we found SSW1 acts maternally to positively regulate seed size. Natural variation in SSW1 contains three types of alleles. The SSW1Cvi allele produces larger seeds with more amino acid and storage protein contents than the SSW1Ler allele. SSW1Cvi displays higher capacity for amino acid transport than SSW1Ler due to the differences in transport efficiency. Under low nitrogen supply, the SSW1Cvi allele exhibits increased seed yield and nitrogen use efficiency (NUE). Locations of natural variation alleles of SSW1 are associated with local soil nitrogen contents, suggesting that SSW1 might contribute to geographical adaptation in Arabidopsis. Thus, our findings reveal a mechanism that coordinates seed growth and NUE, suggesting a potential target for improving seed yield and NUE in crops.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Nitrógeno , Sitios de Carácter Cuantitativo , Semillas , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Nitrógeno/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Alelos , Regulación de la Expresión Génica de las Plantas , Variación Genética
11.
Plant Physiol Biochem ; 210: 108607, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593486

RESUMEN

Grafting in tomato (Solanum lycopersicum L.) has mainly been used to prevent damage by soil-borne pathogens and the negative effects of abiotic stresses, although productivity and fruit quality can also be enhanced using high vigor rootstocks. In the context of a low nutrients input agriculture, the grafting of elite cultivars onto rootstocks displaying higher Nitrogen Use Efficiency (NUE) supports a direct strategy for yield maximization. In this study we assessed the use of plants overexpressing the Arabidopsis (AtCDF3) or tomato (SlCDF3) CDF3 genes, previously reported to increase NUE in tomato, as rootstocks to improve yield in the grafted scion under low N inputs. We found that the AtCDF3 gene induced greater production of sugars and amino acids, which allowed for greater biomass and fruit yield under both sufficient and limiting N supplies. Conversely, no positive impact was found with the SlCDF3 gene. Hormone analyses suggest that gibberellins (GA4), auxin and cytokinins (tZ) might be involved in the AtCDF3 responses to N. The differential responses triggered by the two genes could be related, at least in part, to the mobility of the AtCDF3 transcript through the phloem to the shoot. Consistently, a higher expression of the target genes of the transcription factor, such as glutamine synthase 2 (SlGS2) and GA oxidase 3 (SlGA3ox), involved in amino acid and gibberellin biosynthesis, respectively, was observed in the leaves of this graft combination. Altogether, our results provided further insights into the mode of action of CDF3 genes and their biotechnology potential for transgrafting approaches.


Asunto(s)
Proteínas de Arabidopsis , Carbono , Nitrógeno , Solanum lycopersicum , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
12.
J Plant Physiol ; 294: 154191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38335845

RESUMEN

Nitrogen (N) is one of the most important nutrients for crop plant performance, however, the excessive application of nitrogenous fertilizers in agriculture significantly increases production costs and causes severe environmental problems. Therefore, comprehensively understanding the molecular mechanisms of N-use efficiency (NUE) with the aim of developing new crop varieties that combine high yields with improved NUE is an urgent goal for achieving more sustainable agriculture. Plant NUE is a complex trait that is affected by multiple factors, of which hormones are known to play pivotal roles. In this review, we focus on the interaction between the biosynthesis and signaling pathways of plant hormones with N metabolism, and summarize recent studies on the interplay between hormones and N, including how N regulates multiple hormone biosynthesis, transport and signaling and how hormones modulate root system architecture (RSA) in response to external N sources. Finally, we explore potential strategies for promoting crop NUE by modulating hormone synthesis, transport and signaling. This provides insights for future breeding of N-efficient crop varieties and the advancement of sustainable agriculture.


Asunto(s)
Nitrógeno , Plantas , Nitrógeno/metabolismo , Plantas/metabolismo , Agricultura , Transducción de Señal , Fertilizantes , Hormonas/metabolismo
13.
BMC Plant Biol ; 24(1): 74, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38279107

RESUMEN

Management of nitrogen (N) fertilizer is a critical factor that can improve maize (Zea mays L.) production. On the other hand, high volatilization losses of N also pollute the air. A field experiment was established using a silt clay soil to examine the effect of sulfur-coated urea and sulfur from gypsum on ammonia (NH3) emission, N use efficiency (NUE), and the productivity of maize crop under alkaline calcareous soil. The experimental design was a randomized complete block (RCBD) with seven treatments in three replicates: control with no N, urea150 alone (150 kg N ha-1), urea200 alone (200 kg N ha-1), urea150 + S (60 kg ha-1 S from gypsum), urea200 + S, SCU150 (sulfur-coated urea) and SCU200. The results showed that the urea150 + S and urea200 + S significantly reduced the total NH3 by (58 and 42%) as compared with the sole application urea200. The NH3 emission reduced further in the treatment with SCU150 and SCU200 by 74 and 65%, respectively, compared to the treatment with urea200. The maize plant biomass, grain yield, and total N uptake enhanced by 5-14%, 4-17%, and 7-13, respectively, in the treatments with urea150 + s and urea200 + S, relative to the treatment with urea200 alone. Biomass, grain yield, and total N uptake further increased significantly by 22-30%, 25-28%, and 26-31%, respectively, in the treatments with SCU150 and SCU200, relative to the treatment with urea200 alone. The applications of SCU150 enhanced the nitrogen use efficiency (NUE) by (72%) and SCU200 by (62%) respectively, compared with the sole application of urea200 alone. In conclusion, applying S-coated urea at a lower rate of 150 kg N ha-1 compared with a higher rate of 200 kg N ha-1 may be an effective way to reduce N fertilizer application rate and mitigate NH3 emission, improve NUE, and increase maize yield. More investigations are suggested under different soil textures and climatic conditions to declare S-coated urea at 150 kg N ha-1 as the best application rate for maize to enhance maize growth and yield.


Asunto(s)
Amoníaco , Nitrógeno , Amoníaco/análisis , Nitrógeno/análisis , Agricultura/métodos , Zea mays , Volatilización , Fertilizantes/análisis , Sulfato de Calcio , Suelo , Urea , Grano Comestible/química , Azufre
14.
Plant Biotechnol J ; 22(2): 316-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786281

RESUMEN

Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.


Asunto(s)
Arabidopsis , Nitrógeno , Nitrógeno/metabolismo , Nitratos/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Arabidopsis/genética , Raíces de Plantas/metabolismo
15.
Plant J ; 117(4): 1148-1164, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967146

RESUMEN

Nitrogen (N) is an essential factor for limiting crop yields, and cultivation of crops with low nitrogen-use efficiency (NUE) exhibits increasing environmental and ecological risks. Hence, it is crucial to mine valuable NUE improvement genes, which is very important to develop and breed new crop varieties with high NUE in sustainable agriculture system. Quantitative trait locus (QTL) and genome-wide association study (GWAS) analysis are the most common methods for dissecting genetic variations underlying complex traits. In addition, with the advancement of biotechnology, multi-omics technologies can be used to accelerate the process of exploring genetic variations. In this study, we integrate the substantial data of QTLs, quantitative trait nucleotides (QTNs) from GWAS, and multi-omics data including transcriptome, proteome, and metabolome and further analyze their interactions to predict some NUE-related candidate genes. We also provide the genic resources for NUE improvement among maize, rice, wheat, and sorghum by homologous alignment and collinearity analysis. Furthermore, we propose to utilize the knowledge gained from classical cases to provide the frameworks for improving NUE and breeding N-efficient varieties through integrated genomics, systems biology, and modern breeding technologies.


Asunto(s)
Estudio de Asociación del Genoma Completo , Zea mays , Zea mays/genética , Nitrógeno , Fitomejoramiento , Productos Agrícolas/genética
16.
Plant Physiol Biochem ; 206: 108205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38035467

RESUMEN

Cultivating high nitrogen use efficient varieties is a sustainable solution to mitigating adverse effects on the environment caused by excessive nitrogen fertilizer application. However, in sesame, although immoderate nitrogen fertilizers are used to promote yield, the molecular basis of high nitrogen use efficiency (NUE) is largely unknown. Hence, this study aimed to identify high NUE black sesame variety and dissect the underlying physiological and molecular mechanisms. To achieve this, seventeen seedling traits of 30 black sesame varieties were evaluated under low nitrogen (LN) and high nitrogen (HN) conditions. Dry matter accumulation, root parameters, shoot nitrogen accumulation, and chlorophyll content are important factors for evaluating the NUE of sesame genotypes. The variety 17-156 was identified as the most efficient for N utilization. Comparative physiological and transcriptomics analyses revealed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen into amino acids and proteins, and simultaneously improving carbon metabolism and growth. Specifically, the total nitrogen and soluble protein contents significantly increased with the increase in nitrogen concentrations. Many important genes, including nitrate transporters (NPFs), amino acid metabolism-related (GS, GOGAT, GDH, etc.), phytohormone-related, and transcription factors, were significantly up-regulated in 17-156 under HN condition. In addition, 38 potential candidate genes were identified for future studies toward improving sesame's NUE. These findings offer valuable resources for deciphering the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.


Asunto(s)
Nitrógeno , Sesamum , Nitrógeno/metabolismo , Sesamum/genética , Sesamum/metabolismo , Perfilación de la Expresión Génica , Genotipo , Fenotipo
17.
Mol Plant ; 17(2): 240-257, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38053337

RESUMEN

Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.


Asunto(s)
Compuestos de Amonio , Oryza , Oryza/genética , Fitomejoramiento , Agricultura/métodos , Nitrógeno/metabolismo , Agua/metabolismo , Transducción de Señal , Compuestos de Amonio/metabolismo , Suelo/química , Fertilizantes/análisis
18.
Plants (Basel) ; 12(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068574

RESUMEN

Both fulvic acid (FA) and nitrogen (N) play important roles in agricultural production in China. Plants typically show a higher nitrogen utilization efficiency (NUE) under FA application. However, the role of FA application in apple growth and NUE remains unclear. A hydroponic culture experiment was performed, and M9T337 seedlings (a dwarf apple rootstock) were used as the experimental subjects. The biomass, photosynthesis, accumulation, and distribution of photosynthates, N absorption and assimilation, and relative gene expression in the seedlings were examined after treatment with five different concentrations of FA (0, 60, 120, 180, and 240 mg·L-1, represented by CK, FA1, FA2, FA3, FA4, respectively). The results showed that the seedling dry weight and 15NUE were enhanced by FA, and both were highest under the FA2 (the concentration of fulvic acid is 120 mg·L-1) treatment. Further analysis revealed that under the FA2 treatment, the root morphology was optimized, and the root activity was relatively high. Compared with CK (control, the concentration of fulvic acid is 0 mg·L-1), the FA2 treatment strengthened photosynthesis, elevated the key enzyme activities related to C metabolism, upregulated the gene expression of sugar transport proteins, and increased the root sorbitol and sucrose contents, which suggested that the FA2 treatment optimally affected the root growth and N absorption because it enhanced photosynthate synthesis and the leaf-to-root translocation of photoassimilates. The seedlings in the FA2 treatment group also showed a significantly higher NO3- influx rate and NRT (nitrate transporter) gene expression in the roots. Moreover, relatively high N metabolism-related enzyme activities in the leaves and roots were also observed under the FA2 treatment. The isotope labeling results showed that the optimal FA2 supply not only promoted seedling 15N absorption but also optimized the distribution of C and N in the seedlings. These results suggested that an optimal FA supply (120 mg·L-1) enhanced seedling NUE by strengthening photoassimilate synthesis and transport from leaves to roots, regulating N absorption, assimilation, and distribution.

19.
Physiol Mol Biol Plants ; 29(10): 1371-1394, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38076770

RESUMEN

Nitrogen (N) is needed for plant growth and development and is the major limiting nutrient due to its higher demand in agricultural production globally. The use of N fertilizers has increased considerably in recent years to achieve higher cereal yields. High N inputs coupled with declining N use efficiency (NUE) result in the degradation of the environment. Plants have developed multidimensional strategies in response to changes in N availability in soil. These strategies include N stress-induced responses such as changes in gene expression patterns. Several N stress-induced genes and other regulatory factors, such as microRNAs (miRNAs), have been identified in different plant species, opening a new avenue of research in plant biology. This review presents a general overview of miRNA-mediated regulation of N response and NUE. Further, the in-silico target predictions and the predicted miRNA-gene network for nutrient metabolism/homeostasis in wheat provide novel insights. The information on N-regulated miRNAs and the differentially expressed target transcripts are necessary resources for genetic improvement of NUE by genome editing.

20.
Front Plant Sci ; 14: 1302337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023895

RESUMEN

Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA