Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 6: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30800661

RESUMEN

The kynurenine pathway is the major route for tryptophan metabolism in mammals. Several of the metabolites in the kynurenine pathway, however, are potentially toxic, particularly 3-hydroxykynurenine, 3-hydroxyanthranilic acid, and quinolinic acid. Quinolinic acid (QUIN) is an excitotoxic agonist at the NMDA receptor, and has been shown to be elevated in neurodegenerative diseases such as Alzheimer's Disease and Huntington's Disease. Thus, inhibitors of enzymes in the kynurenine pathway may be valuable to treat these diseases. Kynurenine monooxygenase (KMO) is the ideal target for an inhibitor, since inhibition of it would be expected to decrease the toxic metabolites and increase kynurenic acid (KynA), which is neuroprotective. The first generation of KMO inhibitors was based on structural analogs of the substrate, L-kynurenine. These compounds showed reduction of QUIN and increased KynA in vivo in rats. After the determination of the x-ray crystal structure of yeast KMO, inhibitor design has been facilitated. Benzisoxazoles with sub-nM binding to KMO have been developed recently. Some KMO ligands promote the reaction of NADPH with O2 without hydroxylation, resulting in uncoupled formation of H2O2. This potentially toxic side reaction should be avoided in the design of drugs targeting the kynurenine pathway for treatment of neurodegenerative disorders.

2.
Front Mol Neurosci ; 11: 456, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618608

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) modulators induce rapid and sustained antidepressant like-activity in rodents through a molecular mechanism of action that involves the activation of Ca2+ dependent signaling pathways. Moreover, ketamine, a global NMDAR antagonist is a potent, novel, and atypical drug that has been successfully used to treat major depressive disorder (MDD). However, because ketamine evokes unwanted side effects, alternative strategies have been developed for the treatment of depression. The objective of the present study was to determine the antidepressant effects of either a single dose of hyperforin or lanicemine vs. their combined effects in mice. Hyperforin modulates intracellular Ca2+ levels by activating Ca2+-conducting non-selective canonical transient receptor potential 6 channel (TRPC6) channels. Lanicemine, on the other hand, blocks NMDARs and regulates Ca2+ dependent processes. To evaluate the antidepressant-like activity of hyperforin and lanicemine, a set of in vivo (behavioral) and in vitro methods (western blotting, Ca2+ imaging studies, electrophysiological, and radioligand binding assays) was employed. Combined administration of hyperforin and lanicemine evoked long-lasting antidepressant-like effects in both naïve and chronic corticosterone-treated mice while also enhancing the expression of the synapsin I, GluA1 subunit, and brain derived neurotrophic factor (BDNF) proteins in the frontal cortex. In Ca2+ imaging studies, lanicemine enhanced Ca2+ influx induced by hyperforin. Moreover, compound such as MK-2206 (Akt kinase inhibitor) inhibited the antidepressant-like activity of hyperforin in the tail suspension test (TST). Hyperforin reversed disturbances induced by MK-801 in the novel object recognition (NOR) test and had no effects on NMDA currents and binding to NMDAR. Our results suggest that co-administration of hyperforin and lanicemine induces long-lasting antidepressant effects in mice and that both substances may have different molecular targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA