Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39223343

RESUMEN

Hyperlipidemia (HLP) is a prevalent and intricate condition that plays a pivotal role in impairing heart function. The primary objective of this study was to assess the lipid-lowering and cardioprotective properties of phlorizin (PHZ) and to investigate its potential molecular mechanisms in rats. In this investigation, Sprague-Dawley rats were subjected to a high-fat diet for a period of 28 days to induce an HLP model. Subsequently, the rats received oral doses of PHZ or metformin from day 14 to day 28. We assessed various parameters using commercially available kits, including serum lipid deposition, myocardial injury biomarkers, oxidative stress markers, and inflammatory cytokine levels. We also employed electron microscopy to examine myocardial ultrastructural changes and conducted Western blot analyses to assess apoptosis factors and pyroptosis markers. Comparing the PHZ group with the model group, we observed significant improvements in blood lipid deposition and heart injury biomarkers. Furthermore, PHZ demonstrated a clear reduction in myocardial tissue oxidative stress and inflammatory factors, as well as a suppression of cell apoptosis. Subsequent investigations indicated that PHZ treatment led to a decreased inflammatory response and lowered levels of hexokinase 1 (HK1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and Caspase-1. In summary, PHZ proved to be an effective remedy for alleviating HLP-induced cardiac damage by reducing blood lipid levels, mitigating oxidative stress, curbing inflammation, and suppressing pyroptosis. The inhibition of pyroptosis by PHZ appears to be linked to the regulation of the HK1/NLRP3/Caspase-1 signaling pathway.

2.
Ren Fail ; 46(1): 2337287, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38627212

RESUMEN

OBJECTIVE: This study explored the molecular mechanisms by which dexmedetomidine (Dex) alleviates cisplatin (CP)-induced acute kidney injury (AKI) in rats. METHODS: CP-induced AKI models were established, and Dex was intraperitoneally injected at different concentrations into rats in the model groups. Subsequently, rats were assigned to the control, CP, CP + Dex 10 µg/kg, and CP + Dex 25 µg/kg groups. After weighing the kidneys of the rats, the kidney arterial resistive index was calculated, and CP-induced AKI was evaluated. In addition, four serum biochemical indices were measured: histopathological damage in rat kidneys was detected; levels of inflammatory factors, interleukin (IL)-1ß, IL-18, IL-6, and tumor necrosis factor alpha, in kidney tissue homogenate of rats were assessed through enzyme-linked immunosorbent assay (ELISA); and levels of NLRP-3, caspase-1, cleaved caspase-1, gasdermin D (GSDMD), and GSDMD-N in kidney tissues of rats were determined via western blotting. RESULTS: Dex treatment reduced nephromegaly and serum clinical marker upregulation caused by CP-induced AKI. In addition, hematoxylin and eosin staining revealed that Dex treatment relieved CP-induced kidney tissue injury in AKI rats. ELISA analyses demonstrated that Dex treatment reduced the upregulated levels of proinflammatory cytokines in the kidney tissue of AKI rats induced by CP, thereby alleviating kidney tissue injury. Western blotting indicated that Dex alleviated CP-induced AKI by inhibiting pyroptosis mediated by NLRP-3 and caspase-1. CONCLUSION: Dex protected rats from CP-induced AKI, and the mechanism may be related to NLRP-3/Caspase-1-mediated pyroptosis.


Asunto(s)
Lesión Renal Aguda , Dexmedetomidina , Ratas , Animales , Dexmedetomidina/efectos adversos , Cisplatino/toxicidad , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Riñón/patología , Interleucina-1beta , Caspasas/efectos adversos
3.
Chem Biol Drug Des ; 103(3): e14481, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38458969

RESUMEN

Studies have shown that saikosaponin D (SSD) has favorable neurotherapeutic effects. Therefore, the objective of this study was to explore the efficacy and possible molecular mechanisms of SSD on pilocarpine (PP)-induced astrocyte injury. Primary astrocytes were isolated from juvenile rats and identified using immunofluorescence. The cells were treated with PP and/or SSD for 6 h and 12 h, respectively, followed by measurement of their viability through 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Next, quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of Glial fibrillary acidic protein (GFAP), C3, S100 calcium binding protein A10 (S100a10), pentraxin 3 (Ptx3), toll-like receptor 4 (TLR4), and RAG in astrocytes after different treatments. Enzyme-linked immunosorbent assay and biochemical tests were utilized to evaluate the level of inflammatory factors [interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α)] secreted by cells and the content of oxidative stress-related factors (malondialdehyde [MDA] and glutathione [GSH]) or enzyme activity (catalase [CAT] and glutathione peroxidase [GPX]) in cells. The JC-1 mitochondrial membrane potential (MMP) fluorescence probe was used to measure the MMP in astrocytes. Additionally, western blot was applied to test the expression of proteins related to the nod-like receptor protein 3 (NLRP3)/caspase-1 signaling pathway. PP treatment (1 mM) induced cell injury by significantly reducing the viability of astrocytes and expression of cellular markers. SSD treatment (4 µM) had no toxicity to astrocytes. Besides, SSD (4 µM) treatment could significantly up-regulate the cell viability and marker expression of PP-induced astrocytes. Furthermore, SSD could be employed to inhibit inflammation (reduce IL-1ß, IL-6, and TNF-α levels) and oxidative stress (decrease MDA level, elevate GSH level, the activity of CAT and GPX), and ameliorate mitochondrial dysfunction (upregulate JC-1 ratio) in PP-induced astrocytes. Moreover, further mechanism exploration revealed that SSD treatment significantly reduced the activity of the NLRP3/caspase-1 signaling pathway activated by PP induction. SSD increased cell viability, inhibited inflammation and oxidative stress response, and ameliorated mitochondrial dysfunction in PP-induced astrocyte injury model, thus playing a neuroprotective role. The mechanism of SSD may be related to the inhibition of the NLRP3/caspase-1 inflammasome.


Asunto(s)
Bencimidazoles , Carbocianinas , Enfermedades Mitocondriales , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Oleanólico/análogos & derivados , Saponinas , Ratas , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Pilocarpina/toxicidad , Factor de Necrosis Tumoral alfa/genética , Caspasas/metabolismo , Interleucina-6 , Transducción de Señal , Inflamación/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38347801

RESUMEN

BACKGROUND: Previous studies have found that matrine (MAT) effectively treated Ulcerative Colitis (UC). The purpose of this study is to explore its mechanism based on the HMGB1/NLRP3/Caspase-1 signaling pathway. METHODS: MAT was administered intragastrically to DSS-induced UC mice for 14 days. The Disease Activity Index (DAI) and histological staining were measured to detect histopathological changes in colon. The levels of IL-1ß, IL-6, and TNF-α in serum were measured by ELISA. The protein and mRNA expression of HMGB1/NLRP3/Caspase-1 in the colon were detected by immunohistochemistry, western Blotting or qRT-PCR. RESULTS: MAT improved the histological pathological changes of UC mice, as assessed by DAI, colonic length, and colonic mucosal injury. MAT also reduced colonic inflammatory damage by reducing the serum IL-1ß, IL-6, and TNF-α content and decreasing the expression of HMGB1, NLRP3, Caspase-1, and IL-1ß and proteins and mRNA in the colon. CONCLUSION: MAT could significantly alleviate DSS-induced UC symptoms by reducing the expressions of pro-inflammatory cytokines, such as IL-1ß, TNF-α, and IL-6, the mechanism of which is related to the inhibition of HMGB1/NLRP3/Caspase-1 signaling pathway.

5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030461

RESUMEN

Objective To investigate the protective effect and mechanism of Chaihuang Qingyi Huoxue Granules on pancreatic tissue of rats with severe acute pancreatitis,and to observe its regulation on NLRP3 inflammasome activation.Methods Sixty-four SD rats were randomly divided into sham-surgery(SO)group,severe acute pancreatitis model(SAP)group,Chaihuang Qingyi Huoxue Granules(CH)group,and MCC950(NLRP3 inhibitor)group.Each group was further divided into 12-hour and 24-hour subgroups,with rats in each group.The SAP group,CH group,and MCC950 group were retrogradely injected with 3.5%sodium taurocholate(2 mL·kg-1)into the pancreatic ducts to establish SAP model.The MCC950 group was immediately intraperitoneally injected with MCC950(1 mg·mL-1)after model preparation.After awakening from anesthesia,the CH group was administrated by gavage with Chaihuang Qingyi Huoxue Granules solution(0.35 g·mL-1)once every 6 hours.Ascites,abdominal aortic blood,and pancreatic tissue were collected at 12 hours and 24 hours after SAP model construction.The serum amylase and lipase activities were detected using an automated biochemical analyzer.HE staining was used to observe pancreatic injury.Serum levels of IL-18 and IL-1β were detected by ELISA.The expressions of gene and proteins related to the activation of NLRP3 inflammasome were analyzed by IHC,qRT-PCR and Western Blot.Results Compared with the SAP group,the pathological damage of pancreatic tissues in the CH and MCC950 groups was significantly reduced,and the pathological score was significantly reduced(P<0.05).The levels of serum lipase,amylase,IL-18,and IL-1β were also significantly decreased(P<0.05).After treatment with Chaihuang Qingyi Huoxue Granules or intraperitoneal injection of NLRP3 inhibitor,the positive expressions of NLRP3,ASC and Caspase-1 in pancreatic tissues,as well as the mRNA levels of NLRP3,ASC and Caspase-1,the protein levels of NLRP3,ASC,Pro-Caspase-1 and Caspase-1 were significantly reduced compared to the SAP group(P<0.05).Conclusion Chaihuang Qingyi Huoxue Granules can inhibit the activation of NLRP3 inflammasome,reduce the mRNA and protein expressions of NLRP3,ASC and Caspase-1 in pancreatic tissues,and suppress the release of the downstream inflammatory factors IL-18 and IL-1β and alleviate pancreatitis damage in SAP model rats.

6.
Heliyon ; 9(11): e21522, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027923

RESUMEN

Objective: To determine the protective effect of Shengmai injection (SMI) on myocardial injury in diabetic rats and its mechanism based on NLRP3/Caspase1 signaling pathway. Materials and methods: Rat H9c2 cardiomyocytes were cultured in vitro, and the cell survival rate of different concentrations of palmitate acid (PA) and different concentrations of SMI were detected by CCK-8. The myocardial injury cell model was induced with PA, treated with SMI, and combined with NLRP3 specific inhibitor (MCC950) to interfere with the high-fat-induced rat H9c2 myocardial cell injury model. The cell changes were observed by Hoechst/PI staining and the expression levels of MDA, SOD, and ROS in each group were detected. The protein and gene changes of the NLRP3/Caspase-1 signaling pathway were detected by Western blot and RT-qPCR, respectively. Results: 200 µmol/L of PA were selected to induce the myocardial injury cell model and 25 µL/mL of SMI was selected for intervention concentration. SMI could significantly reduce MDA expression, increase SOD level, and decrease ROS production. SMI could decrease the gene expression levels of NLRP3, ASC, Caspase-1, and GSDMD, and the protein expressions of NLRP3, ASC, Cleaved Caspase-1, GSDMD, and GSDMD-N. Conclusion: SMI can inhibit the high-fat-induced activation of the NLRP3/Caspase-1 signaling pathway, intervene in cardiomyocyte pyroptosis, and prevent diabetic cardiomyopathy.

7.
Zhongguo Zhong Yao Za Zhi ; 48(1): 226-233, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725275

RESUMEN

The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1ß, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1ß, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1ß, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1ß, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.


Asunto(s)
Colitis Ulcerosa , Medicamentos Herbarios Chinos , Animales , Ratones , Caspasa 1/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Interleucina-10/genética , Interleucina-6/genética , Mesalamina/farmacología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Scutellaria baicalensis/química , Factor de Necrosis Tumoral alfa/metabolismo , Medicamentos Herbarios Chinos/farmacología
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970518

RESUMEN

The aim of this study was to explore the effects of Huangqin Tang(HQT) on the NLRP3/Caspase-1 signaling pathway in mice with DSS-induced ulcerative colitis(UC). C57BL/6J mice were randomly divided into a blank group, a model group(DSS group), and low-, medium-and high-dose HQT groups(HQT-L, HQT-M, and HQT-H), and western medicine mesalazine group(western medicine group). The UC model was induced in mice. Subsequently, the mice in the HQT-L, HQT-M, HQT-H groups, and the western medicine group were given low-, medium-, high-dose HQT, and mesalazine suspension by gavage, respectively, while those in the blank and DSS groups were given an equal volume of distilled water by gavage. After 10 days of administration, the body weight, DAI scores, and colonic histopathological score of mice in each group were determined. The levels of IL-6, IL-10, IL-1β, and TNF-α in serum were determined by ELISA. The mRNA expression of NLRP3 and Caspase-1 in colon tissues was determined by RT-qPCR. The protein expression of NLRP3 and Caspase-1 in colon tissues was detected by immunohistochemistry. The results showed that compared with the blank group, the DSS group showed decreased body weight of mice and increased DAI scores and intestinal histopathological score. Compared with the DSS group, the HQT groups and the western medicine group showed improved DAI scores, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). The intestinal histopathological scores of the HQT groups and the western medicine group significantly decreased, especially in the HQT-M, HQT-H, and the western medicine groups(P<0.05). In addition, compared with the blank group, the DSS group showed elevated expression of NLRP3 and Caspase-1 in colon tissues, increased serum levels of IL-6, IL-1β, and TNF-α, and decreased IL-10 level. Compared with the DSS group, the HQT groups and the western medicine group displayed decreased expression of NLRP3 and Caspase-1 in colon tissues, reduced serum levels of IL-6, IL-1β, and TNF-α, and increased IL-10 level. The improvement was the most significant in the HQT-H group and the western medicine group(P<0.01). In conclusion, HQT may reduce the expression of NLRP3 and Caspase-1 in colon tissues, reduce the se-rum levels of IL-6, IL-1β, and TNF-α, and increase the expression of IL-10 by regulating the classic pyroptosis pathway of NLRP3/Caspase-1, thereby improving the symptoms of intestinal injury and inflammatory infiltration of intestinal mucosa in DSS mice to achieve its therapeutic effect.


Asunto(s)
Animales , Ratones , Caspasa 1/genética , Colitis Ulcerosa/genética , Colon , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Interleucina-10/genética , Interleucina-6/genética , Mesalamina/farmacología , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Scutellaria baicalensis/química , Factor de Necrosis Tumoral alfa/metabolismo , Medicamentos Herbarios Chinos/farmacología
9.
Front Pharmacol ; 13: 1033874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313293

RESUMEN

Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1ß, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.

10.
Brain Res Bull ; 174: 11-21, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991606

RESUMEN

Dexmedetomidine (Dex) has been suggested to exert a protective function in ischemic brain injury. In this study, we aimed to elucidate the intrinsic mechanisms of Dex in regulating microglia pyroptosis in ischemic brain injury via the purinergic 2X7 receptor (P2X7R)/NLRP3/Caspase-1 signaling pathway. First, permanent middle cerebral artery occlusion (p-MCAO) rat model was established, followed by the measurement of behavioral deficit, neuronal injury, the volume of brain edema and the infarct size. Dex treatment was suggested to alleviate the neurological deficits in p-MCAO rats and reduce the brain water content and infarct size. Additionally, rat microglia were cultured in vitro and a model of oxygen and glucose (OGD) was established. Microglia cell activity and ultrastructure were detected. Dex could increase cell activity and reduce LDH activity, partially reversing the changes in cell morphology. Furthermore, the activation of P2X7R/NLRP3/Caspase-1 pathway was tested. The obtained findings indicated Dex suppressed microglial pyroptosis by inhibiting the P2X7R/NLRP3/Caspase-1 pathway. Inhibition of P2X7R or NLRP3 could inhibit Caspase-1 p10 expression, improve cell activity, and reduce LDH activity. The same result was verified in vivo experiments. This study indicated that Dex inhibited microglia pyroptosis by blocking the P2X7R/NLRP3/Caspase-1 pathway, thus playing a protective role against ischemic brain injury.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Isquemia Encefálica/prevención & control , Caspasa 1/efectos de los fármacos , Dexmedetomidina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Química Encefálica/efectos de los fármacos , Edema Encefálico/prevención & control , Isquemia Encefálica/psicología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/psicología , Masculino , Microglía/metabolismo , Microglía/patología , Piroptosis/efectos de los fármacos , Ratas Sprague-Dawley
11.
Zhongguo Zhong Yao Za Zhi ; 46(5): 1191-1196, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787114

RESUMEN

To explore the effect of Huangqin Decoction on ulcerative colitis(UC) pyroptosis, and to explain the mechanism of pyroptosis based on NOD-like receptor thermoprotein domain 3(NLRP3)/cysteine proteinase 1(caspase-1) pathway. The animal model of UC induced with 3% dextran sodium sulfate(DSS) was established. The experimental animals were divided into control group, model group, low-dose(4.55 g·kg~(-1)), medium-dose(9.1 g·kg~(-1)) and high-dose(18.2 g·kg~(-1)) Huangqin Decoction groups and salazosulfapyridine group(0.45 g·kg~(-1)). While modeling, intragastric administration was given for 7 consecutive days. On the 8 th day, the mice were euthanized, the colon length was collected, and the histopathological changes were observed by HE staining. The content of interleukin-18(IL-18) was observed by ELISA. The content of lactatedehydrogenase(LDH)was determined by microplate method. TUNEL assay kit was used to detect the cell death. The immunohistochemical staining was used to detect the expressions of NLRP3 and apoptosis-associated speck-like protein containing a CARD(ASC). Western blot was used to detect the expressions of interleukin-1ß(IL-1ß), caspase-1 and gasdermin D(GSDMD).The experimental study showed that compared with normal group, the LDH content, TUNEL positive staining, inflammatory factors(IL-18, IL-1ß), and proteins associated with pyroptosis were significantly increased(P<0.05). Compared with model control group, the LDH content, TUNEL positive staining, inflammatory factors(IL-18, IL-1ß), and proteins associated with pyroptosis were decreased, and these results were more significant in high-dose groups(P<0.05). The results of HE staining showed that Huangqin Decoction could improve the pathological changes of colon. Huangqin Decoction could inhibit UC cell pyroptosis, and the mechanism may be closely related to NLRP3/caspase-1 signaling pathway.


Asunto(s)
Colitis Ulcerosa , Piroptosis , Animales , Caspasa 1/genética , Colitis Ulcerosa/tratamiento farmacológico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Scutellaria baicalensis
12.
Ecotoxicol Environ Saf ; 212: 112012, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33550074

RESUMEN

Microplastics (MPs) considered as a new persistent environmental pollutant could enter into the circulatory system and result in decrease of sperm quantity and quality in mice. However, the effects of Polystyrene MPs (PS MPs) on the ovary and its mechanism in rats remained unclear. In this present study, thirty-two healthy female Wistar rats were exposed to different concentrations of 0.5 µm PS MPs dispersed in deionized water for 90 days. Using hematoxylin-eosin (HE) staining, the number of growing follicles was decreased compared to the control group. In addition, the activity of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were decreased while the expression level of malondialdehyde (MDA) was increased in ovary tissue. Confirmed by immunohistochemistry, the integrated optical density of NLRP3 and Cleaved-Caspase-1 had been elevated by 13.9 and 14 in granulosa cells in the 1.5 mg/kg/d group. Furthermore, compared to the control group, the level of AMH had been decreased by 23.3 pg/ml while IL-1ß and IL-18 had been increased by 32 and 18.5 pg/ml in the 1.5 mg/kg/d group using the enzyme-linked immune sorbent assay (ELISA). Besides, the apoptosis of granulosa cells was elevated measured by terminal deoxyribonucleotide transferase-mediated nick end labeling (TUNEL) staining and flow cytometry. Moreover, western blot assays showed that the expressions of NLRP3/Caspase-1 signaling pathway related factors and Cleaved-Caspase-3 were increased. These results demonstrated that PS MPs could induce pyroptosis and apoptosis of ovarian granulosa cells via the NLRP3/Caspase-1 signaling pathway maybe triggered by oxidative stress. The present study suggested that exposure to microplastics had adverse effects on ovary and could be a potential risk factor for female infertility, which provided new insights into the toxicity of MPs on female reproduction.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 1/metabolismo , Microplásticos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovario/efectos de los fármacos , Poliestirenos/toxicidad , Piroptosis/efectos de los fármacos , Animales , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Malondialdehído/metabolismo , Ovario/metabolismo , Ovario/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal
13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-905224

RESUMEN

Objective:To investigate the effects of iridoid-rich fraction from Valeriana jatamansi Jones (IRFV) on neuronal pyroptosis in rats with acute spinal cord injury, and to explain the related mechanism of neuroprotection. Methods:Twenty-four healthy male Sprague-Dawley rats were randomly divided into sham-operated group, model group and treatment group, with eight rats in each group. The model of spinal cord injury was established by using a medical aneurysm clip in the latter two groups. Only the lamina was removed without injury to the spinal cord in the sham-operated group. Four hours after the operation, the treatment group was given IRFV solution 10 mg/kg, the model group and the sham-operated group were given the same volume of sodium carboxymethyl cellulose (CMC-Na) solution, for seven days. The rats were sacrificed to detected the pathological changes and the residual area of spinal cord tissue through HE staining. The apoptosis of nerve cells of the spinal cord tissue at the perilesional area was detected by TUNEL fluorescent staining. The levels of interleukin (IL)-1 and IL-18 in serum were detected by ELISA Kit and the expression of NLRP3, Caspase-1 and GSDMD were detected by Western blotting. Results:Compared with the sham-operated group, the residual area of spinal cord tissue decreased (P < 0.05), and the positive rate of TUNEL staining, the level of IL-1 and IL-18, and the expression of pyroptosis-associated proteins (NLRP3, Caspase-1 and GSDMD) increased (P < 0.05) in the model group. Compared with the model group, the pathological condition of the spinal cord tissue improved and the residual area of the spinal cord tissue increased (P < 0.05); the positive rate of TUNEL staining, the level of IL-1 and IL-18 and the expression of NLRP3, Caspase-1 and GSDMD decreased (P < 0.05) in the treatment group. Conclusion:IRFV could attenuate the inflammatory response to exert neuroprotective effects, which may be related to the regulation of NLRP3/Caspase-1 signaling pathway to inhibit the neuronal pyroptosis in rats with acute spinal cord injury.

14.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-879021

RESUMEN

To explore the effect of Huangqin Decoction on ulcerative colitis(UC) pyroptosis, and to explain the mechanism of pyroptosis based on NOD-like receptor thermoprotein domain 3(NLRP3)/cysteine proteinase 1(caspase-1) pathway. The animal model of UC induced with 3% dextran sodium sulfate(DSS) was established. The experimental animals were divided into control group, model group, low-dose(4.55 g·kg~(-1)), medium-dose(9.1 g·kg~(-1)) and high-dose(18.2 g·kg~(-1)) Huangqin Decoction groups and salazosulfapyridine group(0.45 g·kg~(-1)). While modeling, intragastric administration was given for 7 consecutive days. On the 8 th day, the mice were euthanized, the colon length was collected, and the histopathological changes were observed by HE staining. The content of interleukin-18(IL-18) was observed by ELISA. The content of lactatedehydrogenase(LDH)was determined by microplate method. TUNEL assay kit was used to detect the cell death. The immunohistochemical staining was used to detect the expressions of NLRP3 and apoptosis-associated speck-like protein containing a CARD(ASC). Western blot was used to detect the expressions of interleukin-1β(IL-1β), caspase-1 and gasdermin D(GSDMD).The experimental study showed that compared with normal group, the LDH content, TUNEL positive staining, inflammatory factors(IL-18, IL-1β), and proteins associated with pyroptosis were significantly increased(P<0.05). Compared with model control group, the LDH content, TUNEL positive staining, inflammatory factors(IL-18, IL-1β), and proteins associated with pyroptosis were decreased, and these results were more significant in high-dose groups(P<0.05). The results of HE staining showed that Huangqin Decoction could improve the pathological changes of colon. Huangqin Decoction could inhibit UC cell pyroptosis, and the mechanism may be closely related to NLRP3/caspase-1 signaling pathway.


Asunto(s)
Animales , Ratones , Caspasa 1/genética , Colitis Ulcerosa/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Scutellaria baicalensis
15.
Inflamm Res ; 68(9): 727-738, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31172209

RESUMEN

BACKGROUND: Oxidative stress-induced endothelial dysfunction and pyroptosis play an important role during chronic kidney disease (CKD) progression. Neferine, which is an alkaloid ingredient from the lotus seed embryo, has many biological actions such as anti-inflammatory, anticancer and antioxidant. However, the role of neferine in endothelial cell pyroptosis and the involved mechanism remain obscure. The aim is to probe the protective effects of neferine on cell pyroptosis and the involved underlying mechanism. METHODS: After the HUVECs were primed with neferine treatment for 2 h prior to LPS and ATP exposure for 24 h, the cell proliferation was determined by BrdU; the cell LDH release was detected by LDH kits; the levels of intracellular ROS, MDA and SOD were tested by detection kits; Caspase-1 activity kit was used to determine caspase-1 activity; the contents of NLRP3, ASC, caspase-1, IL-1ß, IL-18 and GSDMD were tested by RT-PCR and western blot. RESULTS: We found that neferine could inhibit LPS-ATP-induced oxidative stress and the activation of NLRP3 inflammasome signaling, and increased the endothelial cell viability and SOD production. siRNA which mediated the knockdown of NLRP3 promoted the neferine-induced inhibition effects of cell pyroptosis. Furthermore, these neferine-induced effects were reversed by the over-expression of NLRP3. CONCLUSIONS: Our findings indicated neferine may reduce ROS by anti-oxidation and inhibit LPS-ATP-induced endothelial cell pyroptosis via blocking ROS/NLRP3/Caspase-1 signaling pathway, which provides the evidence for therapeutic effect in CKD.


Asunto(s)
Bencilisoquinolinas/farmacología , Caspasa 1/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Adenosina Trifosfato/farmacología , Antioxidantes , Supervivencia Celular , Progresión de la Enfermedad , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Malondialdehído/metabolismo , Estrés Oxidativo , Piroptosis , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Superóxido Dismutasa/metabolismo
16.
Biomed Pharmacother ; 114: 108683, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30947016

RESUMEN

OBJECTIVE: This study is conducted to explore the role of microRNA-223 (miR-223) in brain injury and apoptosis of hippocampal neurons through the NLRP3-Caspase-1 signaling pathway in febrile seizure (FS) rats. METHODS: The models of FS were induced in rats by hot water-bath, which were stereotactically injected with miR-223 mimics and mimics negative control (NC) to perturb the expression of miR-223. A series of experiments was conducted to find out the potential mechanisms of miR-223 on convulsion attack, learning and memory ability, pathological injury of hippocampal neurons, inflammatory injury, apoptosis of hippocampal neurons in FS rats. Besides, the targeting relationship between miR-223 and NLRP3 was also verified. RESULTS: Low expression of miR-223 was found in hippocampus tissues of FS rats. Up-regulation of miR-223 alleviated convulsion attack and improved learning and memory ability, while inhibiting pathological injury of hippocampal neurons and inflammatory injury in FS rats. Up-regulation of miR-223 promoted the survival of hippocampal neurons and inhibited their apoptosis in FS rats. MiR-223 inhibited the activation of NLRP3-Caspase-1 signaling pathway in hippocampus tissues of FS rats by inhibiting NLRP3. CONCLUSION: The inhibited expression of miR-223 after FS may participate in the activation of the NLRP3-Caspase-1 signaling pathway, resulting in brain injury and apoptosis of hippocampal neurons in rat models of FS.


Asunto(s)
Apoptosis/genética , Lesiones Encefálicas/genética , Caspasa 1/genética , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Convulsiones Febriles/genética , Regulación hacia Arriba/genética , Animales , Lesiones Encefálicas/patología , Hipocampo/patología , Aprendizaje/fisiología , Memoria/fisiología , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Convulsiones/genética , Convulsiones/patología , Transducción de Señal/genética , Activación Transcripcional/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA