Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 43(17): 3650-3676, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39020150

RESUMEN

Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas de Plantas , Solanum lycopersicum , Ubiquitinación , Solanum lycopersicum/inmunología , Solanum lycopersicum/virología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas NLR/metabolismo , Proteínas NLR/inmunología , Proteínas NLR/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Tospovirus/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología , Interacciones Huésped-Patógeno/inmunología
2.
Trends Plant Sci ; 29(1): 1-3, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838518

RESUMEN

Despite many years of research, the molecular mechanisms underlying the activation and regulation of host plant resistance (HPR) to insects remain elusive. Recently, Guo et al. reported that a nucleotide-binding leucine-rich repeat NLR protein activates HPR through direct recognition of an insect effector and that autophagy-mediated degradation of this effector negatively regulates HPR.


Asunto(s)
Proteínas NLR , Plantas , Plantas/genética , Plantas/metabolismo , Proteínas NLR/metabolismo , Inmunidad de la Planta/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética
3.
Curr Opin Plant Biol ; 73: 102363, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37094492

RESUMEN

Along with the emergence of green plants on this planet one billion years ago, the nucleotide binding site leucine-rich repeat (NLR) gene family originated and diverged into at least three subclasses. Two of them, with either characterized N-terminal toll/interleukin-1 receptor (TIR) or coiled-coil (CC) domain, serve as major types of immune receptor of effector-triggered immunity (ETI) in plants, whereas the one having a N-terminal Resistance to powdery mildew8 (RPW8) domain, functions as signal transfer component to them. In this review, we briefly summarized the history of identification of diverse NLR subclasses across Viridiplantae lineages during the establishment of NLR category, and highlighted recent advances on the evolution of NLR genes and several key downstream signal components under the background of ecological adaption.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas NLR/genética , Inmunidad de la Planta/genética , Plantas/genética , Plantas/metabolismo , Dominios Proteicos/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo
4.
Essays Biochem ; 66(5): 541-549, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35593644

RESUMEN

To fight off diverse pathogens and pests, the plant immune system must recognize these invaders; however, as plant immune receptors evolve to recognize a pathogen, the pathogen often evolves to escape this recognition. Plant-pathogen co-evolution has led to the vast expansion of a family of intracellular immune receptors-nucleotide-binding domain and leucine-rich repeat proteins (NLRs). When an NLR receptor recognizes a pathogen ligand, it activates immune signaling and thus initiates defense responses. However, in contrast with the model of NLRs acting individually to activate resistance, an emerging paradigm holds that plants have complex receptor networks where the large repertoire of functionally specialized NLRs function together to act against the large repertoire of rapidly evolving pathogen effectors. In this article, we highlight key aspects of immune receptor networks in plant NLR biology and discuss NLR network architecture, the advantages of this receptor network system, and the evolution of the NLR network in asterid plants.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Proteínas Portadoras/metabolismo , Ligandos , Proteínas NLR/química , Proteínas NLR/metabolismo , Nucleótidos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
5.
Stress Biol ; 2(1): 30, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37676367

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors with an N-terminal Toll/Interleukin-1 receptor (TIR) domain detect pathogen effectors to produce TIR-catalyzed signaling molecules for activation of plant immunity. Plant immune signaling by TIR-containing NLR (TNL) proteins converges on Enhanced Disease Susceptibility 1 (EDS1) and its direct partners Phytoalexin Deficient 4 (PAD4) or Senescence-Associated Gene 101 (SAG101). TNL signaling also require helper NLRs N requirement gene 1 (NRG1) and activated disease resistance 1 (ADR1). In two recent remarkable papers published in Science, the authors show that the TIR-containing proteins catalyze and produce two types of signaling molecules, ADPr-ATP/diADPR and pRib-AMP/ADP. Importantly, they demonstrate that EDS1-SAG101 and EDS1-PAD4 modules are the receptor complexes for ADPr-ATP/diADPRp and Rib-AMP/ADP, respectively, which allosterically promote EDS1-SAG101 interaction with NRG1 and EDS1-PAD4 interaction with ADR1. Thus, two different small molecules catalyzed by TIR-containing proteins selectively activate the downstream two distinct branches of EDS1-mediated immune signalings. These breakthrough studies significantly advance our understanding of TNL downstream signaling pathway.

6.
Mol Plant Microbe Interact ; 35(3): 274-289, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34889653

RESUMEN

The Mla (Mildew resistance locus a) of barley (Hordeum vulgare L.) is an effective model for cereal immunity against fungal pathogens. Like many resistance proteins, variants of the MLA coiled-coil nucleotide-binding leucine-rich repeat (CC-NLR) receptor often require the HRS complex (HSP90, RAR1, and SGT1) to function. However, functional analysis of Sgt1 has been particularly difficult, as deletions are often lethal. Recently, we identified rar3 (required for Mla6 resistance 3), an in-frame Sgt1ΔKL308-309 mutation in the SGT1-specific domain, that alters resistance conferred by MLA but without lethality. Here, we use autoactive MLA6 and recombinant yeast-two-hybrid strains with stably integrated HvRar1 and HvHsp90 to determine that this mutation weakens but does not entirely disrupt the interaction between SGT1 and MLA. This causes a concomitant reduction in MLA6 protein accumulation below the apparent threshold required for effective resistance. The ΔKL308-309 deletion had a lesser effect on intramolecular interactions than alanine or arginine substitutions, and MLA variants that display diminished interactions with SGT1 appear to be disproportionately affected by the SGT1ΔKL308-309 mutation. We hypothesize that those dimeric plant CC-NLRs that appear unaffected by Sgt1 silencing are those with the strongest intermolecular interactions with it. Combining our data with recent work in CC-NLRs, we propose a cyclical model of the MLA-HRS resistosome interactions.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Asunto(s)
Hordeum , Hordeum/microbiología , Mutación , Proteínas NLR/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
7.
Trends Plant Sci ; 27(2): 113-115, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34863646

RESUMEN

Plants rely on PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) to detect invading pathogens and subsequently activate defense mechanisms. Recently, four Nature papers (Yuan et al., Ngou et al., Pruitt et al., and Tian et al.)demonstrated that important components in PTI and ETI are required for both PTI and ETI, and PTI and ETI potentiate each other to achieve stronger plant defenses.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos , Plantas , Enfermedades de las Plantas , Inmunidad de la Planta/genética , Plantas/genética , Transducción de Señal
8.
Viruses ; 13(8)2021 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-34452313

RESUMEN

The tomato Sw-5b gene confers resistance to tomato spotted wilt virus (TSWV) and encodes a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal Solanaceae-specific domain (SD). Although our understanding of how Sw-5b recognizes the viral NSm elicitor has increased significantly, the process by which Sw-5b activates downstream defense signaling remains to be elucidated. In this study, we used a tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) system to investigate the roles of the SGT1/RAR1, EDS1/NDR1, NPR1, and NRC/ADR1/NRG1 genes in the Sw-5b-mediated signaling pathway. We found that chaperone SGT1 was required for Sw-5b function, but co-chaperone RAR1 was not. Sw-5b-mediated immune signaling was independent of both EDS1 and NDR1. Silencing NPR1, which is a central component in SA signaling, did not result in TSWV systemic infection in Sw-5b-transgenic N. benthamiana plants. Helper NLR NRCs (NLRs required for cell death) were required for Sw-5b-mediated systemic resistance to TSWV infection. Suppression of NRC2/3/4 compromised the Sw-5b resistance. However, the helper NLRs ADR1 and NRG1 may not participate in the Sw-5b signaling pathway. Silencing ADR1, NRG1, or both genes did not affect Sw-5b-mediated resistance to TSWV. Our findings provide new insight into the requirement for conserved key components in Sw-5b-mediated signaling pathways.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Transducción de Señal/genética , Solanum lycopersicum/virología , Tospovirus/genética , Silenciador del Gen , Inmunidad Innata , Solanum lycopersicum/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Proteínas de Plantas/clasificación , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/virología , Dominios Proteicos , Transducción de Señal/inmunología , Tospovirus/metabolismo
9.
Plant J ; 106(4): 1008-1023, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629456

RESUMEN

Nucleotide-binding domain-leucine-rich repeat-type immune receptors (NLRs) protect plants against pathogenic microbes through intracellular detection of effector proteins. However, this comes at a cost, as NLRs can also induce detrimental autoimmunity in genetic interactions with foreign alleles. This may occur when independently evolved genomes are combined in inter- or intraspecific crosses, or when foreign alleles are introduced by mutagenesis or transgenesis. Most autoimmunity-inducing NLRs are encoded within highly variable NLR gene clusters with no known immune functions, which were termed autoimmune risk loci. Whether risk NLRs differ from sensor NLRs operating in natural pathogen resistance and how risk NLRs are activated in autoimmunity is unknown. Here, we analyzed the DANGEROUS MIX2 risk locus, a major autoimmunity hotspot in Arabidopsis thaliana. By gene editing and heterologous expression, we show that a single gene, DM2h, is necessary and sufficient for autoimmune induction in three independent cases of autoimmunity in accession Landsberg erecta. We focus on autoimmunity provoked by an EDS1-yellow fluorescent protein (YFP)NLS fusion protein to characterize DM2h functionally and determine features of EDS1-YFPNLS activating the immune receptor. Our data suggest that risk NLRs function in a manner reminiscent of sensor NLRs, while autoimmunity-inducing properties of EDS1-YFPNLS in this context are unrelated to the protein's functions as an immune regulator. We propose that autoimmunity, at least in some cases, may be caused by spurious, stochastic interactions of foreign alleles with coincidentally matching risk NLRs.


Asunto(s)
Arabidopsis/genética , Inmunidad Innata/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Autoinmunidad/genética , Fusión Génica , Genes Reporteros , Sitios Genéticos , Proteínas NLR/genética , Nicotiana/genética , Nicotiana/inmunología
10.
Elife ; 82019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31535976

RESUMEN

Plant nucleotide binding, leucine-rich repeat (NLR) receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this approach has proven challenging, in part due to their narrow response specificity. Previously, we revealed the structural basis of pathogen recognition by the integrated heavy metal associated (HMA) domain of the rice NLR Pikp (Maqbool et al., 2015). Here, we used structure-guided engineering to expand the response profile of Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector-binding interface of the integrated Pikp-HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell-death response to AVR-Pik variants previously unrecognized by Pikp in planta. The structures of the engineered Pikp-HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly where this interaction occurs via integrated domains.


Asunto(s)
Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Antígenos Bacterianos/metabolismo , Proteínas NLR/genética , Oryza/enzimología , Proteínas de Plantas/genética , Unión Proteica , Ingeniería de Proteínas , Receptores Inmunológicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Elife ; 82019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30777147

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins in plants and animals mediate intracellular pathogen sensing. Plant NLRs typically detect strain-specific pathogen effectors and trigger immune responses often linked to localized host cell death. The barley Mla disease resistance locus has undergone extensive functional diversification in the host population and encodes numerous allelic NLRs each detecting a matching isolate-specific avirulence effector (AVRA) of the fungal pathogen Blumeria graminis f. sp. hordei (Bgh). We report here the isolation of Bgh AVRa7, AVRa9, AVRa10, and AVRa22, which encode small secreted proteins recognized by allelic MLA7, MLA9, MLA10, and MLA22 receptors, respectively. These effectors are sequence-unrelated, except for allelic AVRa10 and AVRa22 that are co-maintained in pathogen populations in the form of a balanced polymorphism. Contrary to numerous examples of indirect recognition of bacterial effectors by plant NLRs, co-expression experiments with matching Mla-AVRa pairs indicate direct detection of the sequence-unrelated fungal effectors by MLA receptors.


Asunto(s)
Alelos , Ascomicetos/metabolismo , Receptores Inmunológicos/metabolismo , Ascomicetos/genética , Genes de Plantas , Variación Genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Unión Proteica , Receptores Inmunológicos/genética
12.
Int Rev Cell Mol Biol ; 343: 37-63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30712674

RESUMEN

Plants rely on a sophisticated innate immune system to recognize pathogens and defend against pathogen attacks. The immune system must be precisely regulated to be capable of mounting a strong and effective defense response while avoiding autoimmunity. Targeted protein degradation by the ubiquitin-proteasome system (UPS) plays crucial roles in both negative and positive regulations of immunity. In the absence of pathogens, the UPS targets immune receptors and downstream signaling components to maintain their homeostasis. Following pathogen recognition, UPS activity is also required for immune signaling and defense responses. Here we provide an overview of the diverse components of the UPS known to affect plant immunity.


Asunto(s)
Inmunidad de la Planta , Plantas/inmunología , Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Complejo de la Endopetidasa Proteasomal/inmunología , Ubiquitina/inmunología , Ubiquitina/metabolismo
13.
Mol Plant ; 11(8): 1053-1066, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-29842929

RESUMEN

In plant immunity, pathogen-activated intracellular nucleotide binding/leucine rich repeat (NLR) receptors mobilize disease resistance pathways, but the downstream signaling mechanisms remain obscure. Enhanced disease susceptibility 1 (EDS1) controls transcriptional reprogramming in resistance triggered by Toll-Interleukin1-Receptor domain (TIR)-family NLRs (TNLs). Transcriptional induction of the salicylic acid (SA) hormone defense sector provides one crucial barrier against biotrophic pathogens. Here, we present genetic and molecular evidence that in Arabidopsis an EDS1 complex with its partner PAD4 inhibits MYC2, a master regulator of SA-antagonizing jasmonic acid (JA) hormone pathways. In the TNL immune response, EDS1/PAD4 interference with MYC2 boosts the SA defense sector independently of EDS1-induced SA synthesis, thereby effectively blocking actions of a potent bacterial JA mimic, coronatine (COR). We show that antagonism of MYC2 occurs after COR has been sensed inside the nucleús but before or coincident with MYC2 binding to a target promoter, pANAC019. The stable interaction of PAD4 with MYC2 in planta is competed by EDS1-PAD4 complexes. However, suppression of MYC2-promoted genes requires EDS1 together with PAD4, pointing to an essential EDS1-PAD4 heterodimer activity in MYC2 inhibition. Taken together, these results uncover an immune receptor signaling circuit that intersects with hormone pathway crosstalk to reduce bacterial pathogen growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Inmunidad de la Planta/fisiología , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Inmunidad de la Planta/genética , Pseudomonas syringae/patogenicidad , Factores de Transcripción/genética
14.
Proc Natl Acad Sci U S A ; 114(35): E7385-E7394, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808003

RESUMEN

Plants evolved intracellular immune receptors that belong to the NOD-like receptor (NLR) family to recognize the presence of pathogen-derived effector proteins. NLRs possess an N-terminal Toll-like/IL-1 receptor (TIR) or a non-TIR domain [some of which contain coiled coils (CCs)], a central nucleotide-binding (NB-ARC) domain, and a C-terminal leucine-rich repeat (LRR). Activation of NLR proteins results in a rapid and high-amplitude immune response, eventually leading to host cell death at the infection site, the so-called hypersensitive response. Despite their important contribution to immunity, the exact mechanisms of NLR activation and signaling remain unknown and are likely heterogenous. We undertook a detailed structure-function analysis of the plasma membrane (PM)-localized CC NLR Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) using both stable transgenic Arabidopsis and transient expression in Nicotiana benthamiana We report that immune signaling is induced only by activated full-length PM-localized RPM1. Our interaction analyses demonstrate the importance of a functional P-loop for in planta interaction of RPM1 with the small host protein RPM1-interacting protein 4 (RIN4), for constitutive preactivation and postactivation self-association of RPM1 and for proper PM localization. Our results reveal an additive effect of hydrophobic conserved residues in the CC domain for RPM1 function and RPM1 self-association and their necessity for RPM1-RIN4 interaction. Thus, our findings considerably extend our understanding of the mechanisms regulating NLR activation at, and signaling from, the PM.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Inmunidad de la Planta/inmunología , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Inmunidad Innata/inmunología , Péptidos y Proteínas de Señalización Intracelular , Proteínas NLR/inmunología , Enfermedades de las Plantas/inmunología , Unión Proteica , Pseudomonas syringae/fisiología , Receptores Inmunológicos/metabolismo , Transducción de Señal , Nicotiana/metabolismo
15.
Elife ; 62017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28362261

RESUMEN

Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Receptores Inmunológicos/metabolismo , Arabidopsis , Biosíntesis de Proteínas , Nicotiana
16.
Viruses ; 8(11)2016 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-27869775

RESUMEN

The endoplasmic reticulum (ER) is central to plant virus replication, translation, maturation, and egress. Ubiquitin modification of ER associated cellular and viral proteins, alongside the actions of the 26S proteasome, are vital for the regulation of infection. Viruses can arrogate ER associated ubiquitination as well as cytosolic ubiquitin ligases with the purpose of directing the ubiquitin proteasome system (UPS) to new targets. Such targets include necessary modification of viral proteins which may stabilize certain complexes, or modification of Argonaute to suppress gene silencing. The UPS machinery also contributes to the regulation of effector triggered immunity pattern recognition receptor immunity. Combining the results of unrelated studies, many positive strand RNA plant viruses appear to interact with cytosolic Ub-ligases to provide novel avenues for controlling the deleterious consequences of disease. Viral interactions with the UPS serve to regulate virus infection in a manner that promotes replication and movement, but also modulates the levels of RNA accumulation to ensure successful biotrophic interactions. In other instances, the UPS plays a central role in cellular immunity. These opposing roles are made evident by contrasting studies where knockout mutations in the UPS can either hamper viruses or lead to more aggressive diseases. Understanding how viruses manipulate ER associated post-translational machineries to better manage virus-host interactions will provide new targets for crop improvement.


Asunto(s)
Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Virus de Plantas/inmunología , Virus de Plantas/patogenicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Interacciones Huésped-Patógeno , Ubiquitinación , Proteínas Virales/metabolismo
17.
Curr Biol ; 26(18): 2399-2411, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27641772

RESUMEN

Hemibiotrophic pathogens are some of the most destructive plant pathogens, causing huge economic losses and threatening global food security. Infection with these organisms often involves an initial biotrophic infection phase, during which the pathogen spreads in host tissue asymptomatically, followed by a necrotrophic phase, during which host-cell death is induced. How hemibiotrophic pathogens trigger host necrosis and how plants inhibit the transition from the biotrophic stage to the necrotrophic stage in disease symptom expression are mainly unknown. The rice blast fungus Magnaporthe oryzae spreads in rice biotrophically early during infection, but this biotrophic stage is followed by a pronounced switch to cell death and lesion formation. Here, we show that the M. oryzae effector AvrPiz-t interacts with the bZIP-type transcription factor APIP5 in the cytoplasm and suppresses its transcriptional activity and protein accumulation at the necrotrophic stage. Silencing of APIP5 in transgenic rice leads to cell death, and the phenotype is enhanced by the expression of AvrPiz-t. Conversely, Piz-t interacts with and stabilizes APIP5 to prevent necrosis at the necrotrophic stage. At the same time, APIP5 is essential for Piz-t stability. These results demonstrate a novel mechanism for the suppression of effector-triggered necrosis at the necrotrophic stage by an NLR receptor in plants.


Asunto(s)
Proteínas Fúngicas/genética , Magnaporthe/fisiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Proteínas de Plantas/genética , Muerte Celular , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno , Magnaporthe/genética , Oryza/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología
18.
Plant J ; 88(2): 294-305, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27340941

RESUMEN

Plants rely on different immune receptors to recognize pathogens and defend against pathogen attacks. Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play a major role as intracellular immune receptors. Their homeostasis must be maintained at optimal levels in order to effectively recognize pathogens without causing autoimmunity. Previous studies have shown that the activity of the ubiquitin-proteasome system is essential to prevent excessive accumulation of NLR proteins such as Suppressor of NPR1, Constitutive 1 (SNC1). Attenuation of the ubiquitin E3 ligase SCFCPR1 (Constitutive expressor of Pathogenesis Related genes 1) or the E4 protein MUSE3 (Mutant, SNC1-Enhancing 3) leads to NLR accumulation and autoimmunity. In the current study, we report the identification of AtCDC48A as a negative regulator of NLR-mediated immunity. Plants carrying Atcdc48A-4, a partial loss-of-function allele of AtCDC48A, exhibit dwarf morphology and enhanced disease resistance to the oomycete pathogen Hyaloperonospora arabidopsidis (H.a.) Noco2. The SNC1 level is increased in Atcdc48A-4 plants and AtCDC48A interacts with MUSE3 in co-immunoprecipitation experiments, supporting a role for AtCDC48A in NLR turnover. While Arabidopsis contains four other paralogs of AtCDC48A, knockout mutants of these genes do not show obvious immunity-related phenotypes, suggesting functional divergence within this family. As an AAA-ATPase, AtCDC48A likely serves to process the poly-ubiquitinated NLR substrate for final protein degradation by the 26S proteasome.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Unión Proteica , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
19.
New Phytol ; 210(3): 960-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27074399

RESUMEN

Nucleotide-binding leucine-rich repeat proteins (NLRs) serve as intracellular immune receptors in animals and plants. Sensor NLRs perceive pathogen-derived effector molecules and trigger robust host defense. Recent studies revealed the role of three coiled-coil-type NLRs (CNLs) of the ADR1 family - ADR1, ADR1-L1 and ADR1-L2 - as redundant helper NLRs, whose function is required for defense mediated by multiple sensor NLRs. From a mutant snc1-enhancing (MUSE) forward genetic screen in Arabidopsis targeted to identify negative regulators of snc1 that encodes a TIR-type NLR (TNL), we isolated two alleles of muse15, both carrying mutations in ADR1-L1. Interestingly, loss of ADR1-L1 also enhances immunity-related phenotypes in other autoimmune mutants including cpr1, bal and lsd1. This immunity-enhancing effect is not mediated by increased SNC1 protein stability, nor is it fully dependent on the accumulation of the defense hormone salicylic acid (SA). Transcriptional analysis revealed an upregulation of ADR1 and ADR1-L2 in the adr1-L1 background, which may overcompensate the loss of ADR1-L1, resulting in enhanced immunity. Interestingly, autoimmunity of snc1 and chs2, which encode typical TNLs, is fully suppressed by the adr1 triple mutant, suggesting that the ADRs are required for TNL downstream signaling. This study extends our knowledge on the interplay among ADRs and reveals their complexity in defense regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Inmunidad de la Planta , Proteínas/genética , Alelos , Proteínas de Arabidopsis/metabolismo , Clonación Molecular , Genes de Plantas , Pruebas Genéticas , Proteínas Repetidas Ricas en Leucina , Modelos Biológicos , Mutación/genética , Fenotipo , Proteínas/metabolismo , Ácido Salicílico/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA