Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.624
Filtrar
1.
Hematology ; 29(1): 2402102, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39268981

RESUMEN

OBJECTIVE: The prognosis of extra-nodal NK/T cell lymphoma (ENKTL) is poor, and the optimal therapy remains controversial. This study aims to evaluate the safety and efficacy of a new combined modality therapy. METHODS: Phase-2 study of pegaspargase, etoposide and gemcitabine (PEG) combined with involved field radiation therapy (IFRT) in newly-diagnosed patients with early-stage ENKTL. Patients received 4 course of PEG followed by IFRT. The primary endpoints were complete response (CR), partial response (PR), and objective response rate (ORR) after IFRT. Secondary endpoints included progression-free survival (PFS), overall survival (OS) and adverse events. RESULTS: 34 consecutive patients with Ann Arbor stage I/II were enrolled. 3 patients progressed on PEG, while the remaining 31 received IFRT. The ORR was 88.2% (30/34), included 28 (82.4%) complete and 2 (5.8%) partial responses. With a median follow-up of 56.0 months (Interquartile Range [IQR], 36.0-66.9 months), the estimated 5-year PFS and OS were 87.4% (95% Confidence Interval [CI],69.5%-94.8%) and 97.1% (95%CI, 80.1%-99.6%), respectively. Most adverse events were hematological and easily managed. CONCLUSIONS: PEG followed by IFRT is a safe and effective initial therapy for early-stage ENKTL, demonstrating impressive PFS and OS rates. This promising approach warrants further validation in a randomized controlled trial (Registered at Clinicaltrials.gov NCT02705508).Trial registration: ClinicalTrials.gov identifier: NCT02705508.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Asparaginasa , Desoxicitidina , Etopósido , Gemcitabina , Linfoma Extranodal de Células NK-T , Polietilenglicoles , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Linfoma Extranodal de Células NK-T/radioterapia , Linfoma Extranodal de Células NK-T/mortalidad , Linfoma Extranodal de Células NK-T/tratamiento farmacológico , Linfoma Extranodal de Células NK-T/terapia , Masculino , Femenino , Persona de Mediana Edad , Polietilenglicoles/administración & dosificación , Polietilenglicoles/uso terapéutico , Asparaginasa/administración & dosificación , Asparaginasa/uso terapéutico , Asparaginasa/efectos adversos , Etopósido/administración & dosificación , Etopósido/efectos adversos , Etopósido/uso terapéutico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anciano , Estadificación de Neoplasias , Resultado del Tratamiento
2.
Artículo en Ruso | MEDLINE | ID: mdl-39269300

RESUMEN

OBJECTIVE: To study the relationship of the parameters of immunity and systemic inflammation with the structural magnetic resonance imaging (MRI) parameters in patients with mild cognitive impairment (MCI) and pre-MCI undergoing neurocognitive rehabilitation to search for candidate markers of its effectiveness. MATERIAL AND METHODS: The main group included 49 patients, aged ≥60 years, with MCI and pre-MCI with memory impairment, who underwent a course of neurorehabilitation for 5 weeks. The control group included 19 volunteers of similar age with a total MoCA score of ≥25, who did not have cognitive impairment and immuno-inflammatory disorders. The parameters of cellular and humoral immunity and markers of inflammation were studied, and structural MRI was performed. RESULTS: The content of activated natural killer cells (NK-cells) was increased in MCI and pre-MCI (0.63±0.12% vs. 0.22±0.07% in the control group, p=2.2·10-7). The level of immunoglobulin G (IgG) <12.5 g/l in patients with MCI and pre-MCI with the Montreal Cognitive Assessment Scale (MoCA) score <22 was associated with a decrease in the volume of the right nucleus accumbens (376±35 mm3 in patients with IgG <12.5 g/l (p=0.0013) and 480±44 mm3 at IgG <12.5 g/l, 480±44 mm3 in the control group), as well as with a decrease of the thickness and volume of a number of other cortical zones. A logistic regression model including the level of immunoglobulin G, NK cells, CD8+ NK cells and right amygdala volume was constructed to predict the number of MoCA scores 6 months after the course of rehabilitation (R2=0.57; p<1·10-5; standard error of estimate: 2.93). CONCLUSION: As a result of this work, the perspectives of assessing the immunological parameters in combination with socio-demographic data and morphometric changes of the brain as potential prognostic markers of the dynamics of cognitive impairment in patients with MCI and pre-MCI after neurorehabilitation has been shown.


Asunto(s)
Biomarcadores , Disfunción Cognitiva , Células Asesinas Naturales , Imagen por Resonancia Magnética , Humanos , Disfunción Cognitiva/inmunología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Células Asesinas Naturales/inmunología , Inmunoglobulina G/sangre , Inflamación/inmunología
3.
Immunol Cell Biol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269338

RESUMEN

Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, in vitro expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental-derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.

4.
Cytotherapy ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39269404

RESUMEN

Invariant natural killer T (iNKT) cells are a small fraction of T lymphocytes with strong cytotoxic and immunoregulatory properties. We previously showed that human culture-expanded iNKT cells prevent alloreactivity and lyse primary leukemia blasts. Here, iNKT cells have several advantages over T cells based on their immunoregulatory capabilities. Since chimeric antigen receptors (CARs) increase the benefit of immune effector cells, they play a crucial role in improvement of cytotoxic abilities of novel cellular therapeutics such as iNKT cells. In the present study, we investigated transactivation of NK cells and prevention of alloreactivity through iNKT cells transduced with a CD19-directed CAR. iNKT cells were isolated by magnetic cell separation from peripheral blood mononuclear cells and transduced with a CD19-CAR retrovirus. Transduction efficiency, purity and cell subsets were measured by flow cytometry. Transactivation and cytotoxicity assays have been established to investigate the ability of CD19-CAR-iNKT cells to transactivate primary NK cells. A mixed lymphocyte reaction (MLR) was performed to explore the inhibition of alloreactive CD3+ T cells by CD19-CAR-iNKT cells. CD19-CAR-iNKT cells are able to transactivate NK cells independent of cell contact: The expression of activation marker CD69 was significantly increased and also production of the proinflammatory cytokine interferon-gamma was higher in NK cells pretreated with CD19-CAR-iNKT cells. Consequently, the cytotoxic activity of such NK cells was significantly increased being able to lyse leukemia cells more effectively than without prior transactivation. Adding CD19-CAR-iNKT cells to an MLR resulted in a decreased expression of the T cell activation marker CD25 on alloreactive CD3+ T lymphocytes stimulated with HLA mismatched dendritic cells. Also, the proliferation of alloreactive CD3+ T lymphocytes was significantly reduced in this setting. We demonstrate that CD19-CAR-iNKT cells keep their immunoregulatory properties despite transduction with a CAR making them an attractive effector cell population for application after allogeneic hematopoietic cell transplantation. By transactivating NK cells, increasing their cytotoxic activity and suppressing alloreactive T cells, they might further improve outcomes through prevention of both relapse and graft-versus-host disease.

5.
Front Oncol ; 14: 1404051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286025

RESUMEN

Strategies to mobilise natural killer (NK) cells against cancer include tumour-targeting antibodies, NK cell engagers (NKCEs) and the adoptive transfer of ex vivo expanded healthy donor-derived NK cells. Genetic and functional studies have revealed that expression of the activating killer immunoglobulin-like receptor KIR2DS2 is associated with enhanced function in NK cells from healthy donors and improved outcome in several different malignancies. The optimal strategy to leverage KIR2DS2+ NK cells therapeutically is however currently unclear. In this study, we therefore evaluated the response of KIR2DS2-expressing NK cells to activation against cancer with clinically relevant tumour-targeting antibodies and following ex vivo expansion. We identified that KIR2DS2high NK cells from patients with chronic lymphocytic leukaemia and hepatocellular carcinoma had enhanced activation in response to tumour-targeting antibodies compared to KIR2DS2- NK cells. However, the superior function of healthy donor derived KIR2DS2high NK cells was lost following ex vivo expansion which is required for adoptive transfer-based therapeutic strategies. These data provide evidence that targeting KIR2DS2 directly in cancer patients may allow for the utilisation of their enhanced effector function, however such activity may be lost following their ex vivo expansion.

6.
Front Immunol ; 15: 1436747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286242

RESUMEN

Background: Natural killer (NK) cells are proposed to participate in coronary artery disease (CAD) development. However, little is known about how CAD patients' NK cells respond to different stimulatory factors in terms of proliferation capability. Methods and results: Twenty-nine CAD patients' peripheral blood NK cells were isolated and individually treated with IL-2, IL-12, IL-15, IL-18, IL-21, cortisone acetate, hydrocortisone, or ascorbic acid for 36 hours, followed by cell cycle analysis using flow cytometry. The ratio of S and G2/M phase cell number to total cell number was defined as a proliferation index (PrI) and used for proliferative capability indication. The results showed that these eight factors resulted in different life cycle changes in the 29 NK cell samples. Remarkably, 28 out of 29 NK cell samples showed an obvious increase in PrI upon ascorbic acid treatment. The serum lactate dehydrogenase (LDH) level of the 29 CAD patients was measured. The results showed a negative correlation between serum LDH level and the CAD patients' NK cell PrI upon stimulation of interleukins, but not the non-interleukin stimulators. Consistently, a retrospective analysis of 46 CAD patients and 32 healthy donors showed that the circulating NK cell number negatively correlated with the serum LDH level in CAD patients. Unexpectedly, addition of LDH to NK cells significantly enhanced the production of IFN-γ, IL-10 and TNF-α, suggesting a strong regulatory role on NK cell's function. Conclusion: Ascorbic acid could promote the proliferation of the CAD patients' NK cells; LDH serum level may function as an indicator for NK cell proliferation capability and an immune-regulatory factor.


Asunto(s)
Proliferación Celular , Enfermedad de la Arteria Coronaria , Citocinas , Células Asesinas Naturales , L-Lactato Deshidrogenasa , Humanos , Células Asesinas Naturales/inmunología , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/sangre , Masculino , Femenino , Persona de Mediana Edad , L-Lactato Deshidrogenasa/sangre , Anciano , Células Cultivadas
7.
Mol Ther Methods Clin Dev ; 32(3): 101328, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39286335

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies have demonstrated significant successes in treating cancer. Currently, there are six approved CAR T cell products available on the market that target different malignancies of the B cell lineage. However, to overcome the limitations of CAR T cell therapies, other immune cells are being investigated for CAR-based cell therapies. CAR natural killer (NK) cells can be applied as allogeneic cell therapy, providing an economical, safe, and efficient alternative to autologous CAR T cells. To improve CAR research and future in-patient monitoring of cell therapeutics, a simple, reliable, and versatile CAR detection reagent is crucial. As most existing CARs contain a single-chain variable fragment (scFv) with either a Whitlow or a G4S linker site, linker-specific monoclonal antibodies (mAbs) can detect a broad range of CARs. This study demonstrates that these linker-specific mAbs can detect different CAR NK cells in vitro, spiked in whole blood, and within patient-derived tumor spheroids with high specificity and sensitivity, providing an effective and almost universal alternative for scFv-based CAR detection. Additionally, we confirm that linker-specific antibodies can be used for functional testing and enrichment of CAR NK cells, thereby providing a useful research tool to fast-track the development of novel CAR-based therapies.

8.
BMC Infect Dis ; 24(1): 986, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289620

RESUMEN

BACKGROUND: The intricate interplay between genetics and immunology often dictates the host's susceptibility to various diseases. This study explored the genetic causal relationship between natural killer (NK) cell-related traits and the risk of infection. METHODS: Single-nucleotide polymorphisms (SNPs) significantly associated with NK cell-related traits were selected as instrumental variables to estimate their genetic causal effects on infection. SNPs from a genome-wide association study (GWAS) on NK cell-related traits, including absolute cell counts, median fluorescence intensities reflecting surface antigen levels, and relative cell counts, were used as exposure instruments. Summary-level GWAS statistics of four phenotypes of infection were used as the outcome data. The exposure and outcome data were analyzed via the two-sample Mendelian randomization method. RESULTS: Each one standard deviation increase in the expression level of human leukocyte antigen (HLA)-DR on HLA-DR+ NK cells was associated with a lower risk of pneumonia (P < 0.05). An increased HLA-DR+ NK/CD3- lymphocyte ratio was related to a lower of risk of pneumonia (P  < 0.05). Each one standard deviation increase in the absolute count of HLA-DR+ NK cells was associated with a lower risk of both bacterial pneumonia and pneumonia (P < 0.05). An increased HLA-DR+ NK/NK ratio was associated with a decreased risk of both pneumonia and bacterial pneumonia (P < 0.05). The results were robust under all sensitivity analyses. No evidence for heterogeneity, pleiotropy, or potential reverse causality was detected. Notably, our analysis did not reveal any significant associations between NK cell-related traits and other phenotypes of infection, including cellulitis, cystitis, and intestinal infection. CONCLUSIONS: HLA-DR+ NK cells could be a novel immune cell trait associated with a lower risk of bacterial pneumonia or pneumonia.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Asesinas Naturales , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Células Asesinas Naturales/inmunología , Humanos , Antígenos HLA-DR/genética , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/genética , Fenotipo
9.
J Immunother Cancer ; 12(9)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266215

RESUMEN

BACKGROUND: Pediatric patients with recurrent/metastatic Ewing sarcoma (ES) have a dismal 5-year survival. Novel therapeutic approaches are desperately needed. Natural killer (NK) cell number and function are low in ES patient tumors, in large part due to the immunosuppressive tumor microenvironment (TME). Melanoma cell adhesion molecule (MCAM) is highly expressed on ES and associated with ES metastasis. NKTR-255 is a polymer-conjugated recombinant human interleukin-15 (IL-15) agonist improving NK cell activity and persistence. Magrolimab (MAG) is a CD47 blockade that reactivates the phagocytic activity of macrophages. METHODS: Transcriptome profiling coupled with CIBERSORT analyses in both ES mouse xenografts and human patient tumors were performed to identify mechanisms of NK resistance in ES TME. A chimeric antigen receptor (CAR) NK cell targeting MCAM was engineered by CAR mRNA electroporation into ex vivo expanded NK cells. In vitro cytotoxicity assays were performed to investigate the efficacy of anti-MCAM-CAR-NK cell alone or combined with NKTR-255 against ES cells. Interferon-γ and perforin levels were measured by ELISA. The effect of MAG on macrophage phagocytosis of ES cells was evaluated by in vitro phagocytosis assays. Cell-based and patient-derived xenograft (PDX)-based xenograft mouse models of ES were used to investigate the antitumor efficacy of CAR-NK alone and combined with NKTR-255 and MAG in vivo. RESULTS: We found that NK cell infiltration and activity were negatively regulated by tumor-associated macrophages (TAM) in ES TME. Expression of anti-MCAM CAR significantly and specifically enhanced NK cytotoxic activity against MCAMhigh but not MCAM-knockout ES cells in vitro, and significantly reduced lung metastasis and extended animal survival in vivo. NKTR-255 and MAG significantly enhanced in vitro CAR-NK cytotoxicity and macrophage phagocytic activity against ES cells, respectively. By combining with NKTR-255 and MAG, the anti-MCAM-CAR-NK cell significantly decreased primary tumor growth and prolonged animal survival in both cell- and PDX-based ES xenograft mouse models. CONCLUSIONS: Our preclinical studies demonstrate that immunotherapy via the innate immune system by combining tumor-targeting CAR-NK cells with an IL-15 agonist and a CD47 blockade is a promising novel therapeutic approach to targeting MCAMhigh malignant metastatic ES.


Asunto(s)
Inmunoterapia , Sarcoma de Ewing , Microambiente Tumoral , Humanos , Sarcoma de Ewing/inmunología , Sarcoma de Ewing/terapia , Animales , Ratones , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Inmunidad Innata , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273395

RESUMEN

FMS-like tyrosine kinase 3 (FLT3) mutations are genetic changes found in approximately thirty percent of patients with acute myeloid leukemia (AML). FLT3 mutations in AML represent a challenging clinical scenario characterized by a high rate of relapse, even after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The advent of FLT3 tyrosine kinase inhibitors (TKIs), such as midostaurin and gilteritinib, has shown promise in achieving complete remission. However, a substantial proportion of patients still experience relapse following TKI treatment, necessitating innovative therapeutic strategies. This review critically addresses the current landscape of TKI treatments for FLT3+ AML, with a particular focus on gilteritinib. Gilteritinib, a highly selective FLT3 inhibitor, has demonstrated efficacy in targeting the mutant FLT3 receptor, thereby inhibiting aberrant signaling pathways that drive leukemic proliferation. However, monotherapy with TKIs may not be sufficient to eradicate AML blasts. Specifically, we provide evidence for integrating gilteritinib with mammalian targets of rapamycin (mTOR) inhibitors and interleukin-15 (IL-15) complexes. The combination of gilteritinib, mTOR inhibitors, and IL-15 complexes presents a compelling strategy to enhance the eradication of AML blasts and enhance NK cell killing, offering a potential for improved patient outcomes.


Asunto(s)
Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pirazinas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Mutación , Transducción de Señal/efectos de los fármacos , Compuestos de Anilina/uso terapéutico , Compuestos de Anilina/farmacología
11.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273424

RESUMEN

Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.


Asunto(s)
Vesículas Extracelulares , Células Asesinas Naturales , Monocitos , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/citología , Células THP-1 , Técnicas de Cocultivo , Comunicación Celular/inmunología , Supervivencia Celular , Macrófagos/inmunología , Macrófagos/metabolismo
12.
Mol Immunol ; 175: 10-19, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276709

RESUMEN

Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.

13.
Oncologist ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284781

RESUMEN

BACKGROUND: Despite guidelines for managing chemotherapy-induced nausea and vomiting (CINV), there remains a need to clarify the optimal use of neurokinin-1 (NK1) receptor antagonists. Comparing the effectiveness of NEPA (netupitant-palonosetron) plus dexamethasone with other NK1 antagonist-based regimens combined with a 5HT3 receptor antagonist and dexamethasone is crucial for informed decision-making and improving patient outcomes. METHODS: We conducted a systematic review of the literature to assess randomized controlled trials (RCTs) comparing the efficacy, safety, and cost-effectiveness of NEPA plus dexamethasone and other NK1 antagonist-based regimens combined with a 5HT3 receptor antagonist and dexamethasone. PubMed, Embase, and the Cochrane Library databases were systematically searched, with the latest update performed in December 2023. Data on patient demographics, chemotherapy regimen characteristics, and outcomes were extracted for meta-analysis using a random-effects model. RESULTS: Seven RCTs were analyzed. NEPA plus dexamethasone showed superior efficacy in achieving complete response in the overall (risk ratio [RR], 1.15; 95% CI, 1.02--1.30) and delayed phases (RR, 1.20; 95% CI, 1.03-1.41) of chemotherapy. It was more effective in controlling nausea (overall phase RR, 1.20; 95% CI, 1.05-1.36; delayed phase RR, 1.21; 95% CI, 1.05-1.40) and reducing rescue therapy use (overall phase RR, 1.45; 95% CI, 1.07-1.95; delayed phase RR, 1.75; 95% CI, 1.10-2.78). Adverse event rates were comparable (RR, 1.03; 95% CI, 0.96-1.10). Subgroup analysis indicated NEPA's particular efficacy in patients receiving moderately emetogenic chemotherapy (RR, 1.31; 95% CI, 1.07-1.60). CONCLUSION: NEPA plus dexamethasone regimens exhibit superior efficacy in preventing CINV, supporting their preferential inclusion in prophylactic treatment protocols. Its effective symptom control, safety profile, and cost-effectiveness endorse NEPA-based regimens as a beneficial option in CINV management.

14.
Eur J Immunol ; : e2451008, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279550

RESUMEN

Lipid nanoparticles (LNPs) have emerged as the preeminent nonviral drug delivery vehicles for nucleic acid therapeutics, as exemplified by their usage in the mRNA COVID-19 vaccines. As a safe and highly modular delivery platform, LNPs are attractive for a wide range of applications. In addition to vaccines, LNPs are being utilized as platforms for other immunoengineering efforts, especially as cancer immunotherapies by modulating immune cells and their functionality via nucleic acid delivery. In this review, we focus on the methods and applications of LNP-based immunotherapy in five cell types: T cells, NK cells, macrophages, stem cells, and dendritic cells. Each of these cell types has wide-reaching applications in immunotherapy but comes with unique challenges and delivery barriers. By combining knowledge of immunology and nanotechnology, LNPs can be developed for improved immune cell targeting and transfection, ultimately working toward novel clinical therapeutics.

15.
Artículo en Inglés | MEDLINE | ID: mdl-39279565

RESUMEN

INTRODUCTION: Systemic sclerosis (SSc) is the rheumatic disease with the highest individual mortality rate with detrimental impact on quality of life. Cell-based therapies may offer new perspectives for this disease as recent phase I trials support the safety of IV infusion of allogeneic mesenchymal stromal cells in SSc and case reports highlight the potential use of Chimeric Antigen Receptor (CAR)-T cells targeting CD19 in active SSc patients who have not responded to conventional immunosuppressive therapies. AREAS COVERED: This narrative review highlights the most recent evidence supporting the use of cellular therapies in SSc as well as their potential mechanisms of action and discusses future perspectives for cell-based therapies in SSc. Medline/PubMed was used to identify the articles of interest, using the key words 'Cellular therapies,' 'Mesenchymal stromal cells,' 'Chimeric Antigen Receptor' AND 'systemic sclerosis.' Milestones articles reported by the authors were also used. EXPERT OPINION: Cellular therapies may represent an opportunity for long term remission/cure in patients with different autoimmune diseases, including SSc who have not responded to conventional therapies. Multiple ongoing Phase I/II trials will provide greater insights into efficacy and toxicity of cellular therapies.

16.
medRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39228728

RESUMEN

Background: Delayed cerebral ischemia (DCI) is a significant complication of aneurysmal subarachnoid hemorrhage (aSAH). This study profiled immune responses after aSAH and evaluated their association with DCI onset. Methods: Twelve aSAH patients were enrolled. Leukocyte populations and cytokine levels were analyzed in cerebrospinal fluid (CSF) and peripheral blood (PB) on days 3, 5, 7, 10, and 14 post-aSAH. Peripheral blood mononuclear cells (PBMCs) were collected and their cytokine production quantified following stimulation. Results: Mixed-effects models revealed distinct immune cell dynamics in CSF compared to blood. Natural killer T cell frequency increased over time in CSF only, while monocyte/macrophage numbers increased in both CSF and PBMCs. CD4+ HLA II+ T cells increased in circulation. Unstimulated PBMCs showed increased IL-1ß, IL-6, and TNFα production, peaking at 7 days post-aSAH, coinciding with typical DCI onset. Ex vivo stimulation of PBMCs showed that only IL-6 significantly changed over time. In CSF, cytokines peaked 5 days post-injury, preceding immune cell profile alterations. Conclusions: Our findings reveal a time-dependent immune response following aSAH, with distinct within-patient patterns in CSF and PB. The early CSF cytokine peak preceding immune cell changes suggests a potential mechanistic link and identifies the cytokine response as a promising therapeutic target. This cytokine surge may drive immune cell expansion and prime PBMCs for increased inflammatory activity, potentially contributing to DCI risk. Future studies should explore the importance and sources of specific cytokines in driving immune activation. These insights may inform the development of targeted immunomodulatory strategies for preventing or managing DCI in aSAH patients.

17.
Cells ; 13(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273034

RESUMEN

Natural Killer (NK) cells, integral components of the innate immune system, play a crucial role in the protection against intracellular threats. Their cytotoxic power requires that activation is tightly controlled, and in this, they take a unique position within the immune system. Rather than depending on the engagement of a single activating receptor, their activation involves a delicate balance between inhibitory and activating signals mediated through an array of surface molecules. Only when this cumulative balance surpasses a specific threshold do NK cells initiate their activity. Remarkably, the activation threshold of NK cells remains robust even when cells express vastly different repertoires of inhibitory and activating receptors. These threshold values seem to be influenced by NK cell interactions with their environment during development and after release from the bone marrow. Understanding how NK cells integrate this intricate pattern of stimuli is an ongoing area of research, particularly relevant for cellular therapies seeking to harness the anti-cancer potential of these cells by modifying surface receptor expression. In this review, we will explore some of the current dogmas regarding NK cell activation and discuss recent literature addressing advances in our understanding of this field.


Asunto(s)
Células Asesinas Naturales , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Animales , Activación de Linfocitos/inmunología , Transducción de Señal
18.
Mol Cancer ; 23(1): 188, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243032

RESUMEN

Triple negative breast cancer (TNBC) is a particularly lethal breast cancer (BC) subtype driven by cancer stem cells (CSCs) and an immunosuppressive microenvironment. Our study reveals that nucleus accumbens associated protein 1 (NAC1), a member of the BTB/POZ gene family, plays a crucial role in TNBC by maintaining tumor stemness and influencing myeloid-derived suppressor cells (MDSCs). High NAC1 expression correlates with worse TNBC prognosis. NAC1 knockdown reduced CSC markers and tumor cell proliferation, migration, and invasion. Additionally, NAC1 affects oncogenic pathways such as the CD44-JAK1-STAT3 axis and immunosuppressive signals (TGFß, IL-6). Intriguingly, the impact of NAC1 on tumor growth varies with the host immune status, showing diminished tumorigenicity in natural killer (NK) cell-competent mice but increased tumorigenicity in NK cell-deficient ones. This highlights the important role of the host immune system in TNBC progression. In addition, high NAC1 level in MDSCs also supports TNBC stemness. Together, this study implies NAC1 as a promising therapeutic target able to simultaneously eradicate CSCs and mitigate immune evasion.


Asunto(s)
Proliferación Celular , Células Supresoras de Origen Mieloide , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Humanos , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Femenino , Ratones , Células Supresoras de Origen Mieloide/metabolismo , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Pronóstico , Movimiento Celular , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias
19.
Front Immunol ; 15: 1457887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267747

RESUMEN

NKG2D is an activating receptor expressed by natural killer (NK) cells and other cytotoxic lymphocytes that plays a pivotal role in the elimination of neoplastic cells through recognition of different stress-induced cell surface ligands (NKG2DL). To employ this mechanism for cancer immunotherapy, we generated NKG2D-engaging bispecific antibodies that selectively redirect immune effector cells to cancer cells expressing the tumor-associated antigen ErbB2 (HER2). NKG2D-specific single chain fragment variable (scFv) antibodies cross-reactive toward the human and murine receptors were derived by consecutive immunization of chicken with the human and murine antigens, followed by stringent screening of a yeast surface display immune library. Four distinct species cross-reactive (sc) scFv domains were selected, and reformatted into a bispecific engager format by linking them via an IgG4 Fc domain to a second scFv fragment specific for ErbB2. The resulting molecules (termed scNKAB-ErbB2) were expressed as disulfide-linked homodimers, and demonstrated efficient binding to ErbB2-positive cancer cells as well as NKG2D-expressing primary human and murine lymphocytes, and NK-92 cells engineered with chimeric antigen receptors derived from human and murine NKG2D (termed hNKAR and mNKAR). Two of the scNKAB-ErbB2 molecules were found to compete with the natural NKG2D ligand MICA, while the other two engagers interacted with an epitope outside of the ligand binding site. Nevertheless, all four tested scNKAB-ErbB2 antibodies were similarly effective in redirecting the cytotoxic activity of primary human and murine lymphocytes as well as hNKAR-NK-92 and mNKAR-NK-92 cells to ErbB2-expressing targets, suggesting that further development of these species cross-reactive engager molecules for cancer immunotherapy is warranted.


Asunto(s)
Anticuerpos Biespecíficos , Reacciones Cruzadas , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptor ErbB-2 , Animales , Humanos , Receptor ErbB-2/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Ratones , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Reacciones Cruzadas/inmunología , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/farmacología , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Cadena Única/genética , Línea Celular Tumoral , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos
20.
Int Immunopharmacol ; 142(Pt A): 113086, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260304

RESUMEN

Interleukin (IL)-37, a unique member of the IL-1 family, is known for its anti-inflammatory properties. However, its effects on immune-mediated liver diseases, such as primary biliary cholangitis (PBC) and acute immune-mediated hepatitis, remain unclear. Using mouse models of autoimmune cholangitis and hepatitis induced by 2-OA-OVA and concanavalin A (Con A) respectively, we introduced the human IL-37 gene via a liver-preferred adeno-associated virus vector (AAV-IL-37) to mice, as mice lack endogenous IL-37. Our findings reveal that IL-37 did not affect autoimmune cholangitis. Surprisingly, IL-37 exacerbated inflammation in Con A-induced hepatitis rather than mitigating it. Mechanistic insights suggest that this exacerbation involves the interferon (IFN)-γ pathway, supported by elevated serum IFN-γ levels in AAV-IL-37-treated Con A mice. Specifically, IL-37 heightened the number of hepatic NK and NKT cells, increased the production of the NK cell chemoattractant CCL5, and elevated the frequency of hepatic NK and NKT cells expressing IFN-γ. Moreover, IL-37 enhanced IFN-γ secretion from NK cells when combined with other proinflammatory cytokines, highlighting its synergistic effect in promoting IFN-γ production. These unexpected outcomes underscore a novel role for IL-37 in exacerbating liver inflammation during immune-mediated liver diseases, implicating its influence on NK cells and the production of IFN-γ by these cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA