Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39265576

RESUMEN

The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNA-seq and ATAC-seq in Alzheimer's disease (AD), frontotemporal dementia (FTD), and progressive supranuclear palsy (PSP), analyzing 41 participants and ∼1 million cells (RNA + ATAC) from three brain regions varying in vulnerability and pathological burden. We identify 32 shared, disease-associated cell types and 14 that are disease specific. Disease-specific cell states represent glial-immune mechanisms and selective neuronal vulnerability impacting layer 5 intratelencephalic neurons in AD, layer 2/3 intratelencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We identify disease-associated gene regulatory networks and cells impacted by causal genetic risk, which differ by disorder. These data illustrate the heterogeneous spectrum of glial and neuronal compositional and gene expression alterations in different dementias and identify therapeutic targets by revealing shared and disease-specific cell states.

2.
J Adv Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243941

RESUMEN

INTRODUCTION: Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES: Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS: Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS: Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS: Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.

3.
Biochem Biophys Res Commun ; 734: 150640, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39241620

RESUMEN

Biallelic mutations in the GBA1 gene result in Gaucher disease (GD), and both patients with GD and carriers of a single GBA1 mutation have an increased susceptibility to Parkinson's disease (PD), but the underlying mechanisms of this association are not yet clear. In previous studies, we established Gba1 F213I point mutation mice and found that homozygous Gba1 F213I mutant mice died shortly after birth, while heterozygous mice could survive normally. In this study, we investigated the transcriptomic changes in the brain tissue of Gba1 F213I heterozygous mice, identifying 138 differentially expressed genes. Among them, Nfe2l1 was the most significantly downregulated gene. Inhibition or knockdown of GBA1 in BE(2)-M17 cells resulted in decreased expression levels of NFE2L1. Knockdown of GBA1 or NFE2L1 could lead to an elevation in intracellular aggregation of α-synuclein (α-syn) and reactive oxygen species (ROS) levels, while upregulation of NFE2L1 effectively mitigated those cellular manifestations induced by GBA1 knockdown. In summary, our in vitro results showed that upregulation of NFE2L1 may provide a therapeutic benefit for cellular phenotypes resulting from GBA1 knockdown, providing new insights for future research on GD and GBA1-associated PD.

4.
Mol Cell ; 84(16): 3115-3127.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39116872

RESUMEN

Proteasome is essential for cell survival, and proteasome inhibition induces proteasomal gene transcription via the activated endoplasmic-reticulum-associated transcription factor nuclear factor erythroid 2-like 1 (Nrf1/NFE2L1). Nrf1 activation requires proteolytic cleavage by DDI2 and N-glycan removal by NGLY1. We previously showed that Nrf1 ubiquitination by SKP1-CUL1-F-box (SCF)FBS2/FBXO6, an N-glycan-recognizing E3 ubiquitin ligase, impairs its activation, although the molecular mechanism remained elusive. Here, we show that SCFFBS2 cooperates with the RING-between-RING (RBR)-type E3 ligase ARIH1 to ubiquitinate Nrf1 through oxyester bonds in human cells. Endo-ß-N-acetylglucosaminidase (ENGASE) generates asparagine-linked N-acetyl glucosamine (N-GlcNAc) residues from N-glycans, and N-GlcNAc residues on Nrf1 served as acceptor sites for SCFFBS2-ARIH1-mediated ubiquitination. We reconstituted the polyubiquitination of N-GlcNAc and serine/threonine residues on glycopeptides and found that the RBR-specific E2 enzyme UBE2L3 is required for the assembly of atypical ubiquitin chains on Nrf1. The atypical ubiquitin chains inhibited DDI2-mediated activation. The present results identify an unconventional ubiquitination pathway that inhibits Nrf1 activation.


Asunto(s)
Factor Nuclear 1 de Respiración , Ubiquitinación , Humanos , Células HEK293 , Factor Nuclear 1 de Respiración/metabolismo , Factor Nuclear 1 de Respiración/genética , Factor 1 Relacionado con NF-E2/metabolismo , Factor 1 Relacionado con NF-E2/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Acetilglucosamina/metabolismo , Células HeLa , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética
5.
Life Sci ; 352: 122906, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38992575

RESUMEN

Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) is a crucial member of the CNC-bZIP subfamily of transcription factors expressed ubiquitously throughout our body. Recent findings have revealed its association with various metabolic processes, encompassing glucose, lipid, and protein metabolism. In the realm of glucose metabolism, NFE2L1 exerts regulatory control by modulating pancreatic ß cells and insulin production. It also influences glucose metabolism in liver and the insulin sensitivity of adipose tissue. Regarding lipid metabolism, NFE2L1 governs this process by influencing the expression of specific adipogenic and lipolysis genes in both liver and adipose tissue. Additionally, NFE2L1 regulates specific lipids, such as cholesterol. These involvements underlie various manifestations of NFE2L1 deficiency such as adipocyte hypertrophy, inflammation, and steatohepatitis. In the realm of protein metabolism, NFE2L1 serves as a major transcription factor regulating the 26S proteasome genes expression, which dysfunction has been related with multiple diseases including neurodegenerative diseases, cancers, autoimmune conditions, etc. In this comprehensive review, we summarize the diverse roles that NFE2L1 plays in glucose, lipid, and protein metabolism, as well as its impact on diseases related to these metabolic processes.


Asunto(s)
Metabolismo de los Lípidos , Humanos , Metabolismo de los Lípidos/genética , Animales , Factor 1 Relacionado con NF-E2/metabolismo , Factor 1 Relacionado con NF-E2/genética , Glucosa/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/genética , Tejido Adiposo/metabolismo , Hígado/metabolismo
6.
J Biol Chem ; 300(8): 107583, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025451

RESUMEN

Ferroptosis is an iron-dependent cell death mechanism that may be important to prevent tumor formation and useful as a target for new cancer therapies. Transcriptional networks play a crucial role in shaping ferroptosis sensitivity by regulating the expression of transporters, metabolic enzymes, and other proteins. The Cap'n'collar (CNC) protein NFE2 like bZIP transcription factor 2 (NFE2L2, also known as NRF2) is a key regulator of ferroptosis in many cells and contexts. Emerging evidence indicates that the related CNC family members, BTB domain and CNC homolog 1 (BACH1) and NFE2 like bZIP transcription factor 1 (NFE2L1), also have roles in ferroptosis regulation. Here, we comprehensively review the role of CNC transcription factors in governing cellular sensitivity to ferroptosis. We describe how CNC family members regulate ferroptosis sensitivity through modulation of iron, lipid, and redox metabolism. We also use examples of ferroptosis regulation by CNC proteins to illustrate the flexible and highly context-dependent nature of the ferroptosis mechanism in different cells and conditions.


Asunto(s)
Ferroptosis , Factor 2 Relacionado con NF-E2 , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Animales , Hierro/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Oxidación-Reducción
7.
Antioxidants (Basel) ; 13(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39061827

RESUMEN

Cancer cells subvert multiple properties of normal cells, including escaping strict cell cycle regulation, gaining resistance to cell death, and remodeling the tumor microenvironment. The hallmarks of cancer have recently been updated and summarized. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also named NRF1) belongs to the cap'n'collar (CNC) basic-region leucine zipper (bZIP) family. It acts as a transcription factor and is indispensable for maintaining both cellular homoeostasis and organ integrity during development and growth, as well as adaptive responses to pathophysiological stressors. In addition, NFE2L1 mediates the proteasome bounce-back effect in the clinical proteasome inhibitor therapy of neuroblastoma, multiple myeloma, and triple-negative breast cancer, which quickly induces proteasome inhibitor resistance. Recent studies have shown that NFE2L1 mediates cell proliferation and metabolic reprogramming in various cancer cell lines. We combined the framework provided by "hallmarks of cancer" with recent research on NFE2L1 to summarize the role and mechanism of NFE2L1 in cancer. These ongoing efforts aim to contribute to the development of potential novel cancer therapies that target the NFE2L1 pathway and its activity.

8.
Cancer Med ; 13(7): e7021, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562019

RESUMEN

OBJECTIVE: Non-small-cell lung cancer (NSCLC) is a deadly form of cancer that exhibits extensive intercellular communication which contributed to chemoradiotherapy resistance. Recent evidence suggests that arrange of key proteins are involved in lung cancer progression, including gap junction proteins (GJPs). METHODS AND RESULTS: In this study, we examined the expression patterns of GJPs in NSCLC, uncovering that both gap junction protein, beta 2 (GJB2) and gap junction protein, beta 2 (GJB3) are increased in LUAD and LUSC. We observed a correlation between the upregulation of GJB2, GJB3 in clinical samples and a worse prognosis in patients with NSCLC. By examining the mechanics, we additionally discovered that nuclear factor erythroid-2-related factor 1 (NFE2L1) had the capability to enhance the expression of connexin26 and connexin 31 in the NSCLC cell line A549. In addition, the use of metformin was discovered to cause significant downregulation of gap junction protein, betas (GJBs) by limiting the presence of NFE2L1 in the cytoplasm. CONCLUSION: This emphasizes the potential of targeting GJBs as a viable treatment approach for NSCLC patients receiving metformin.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metformina , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Conexinas/genética , Conexinas/metabolismo , Conexinas/uso terapéutico , Uniones Comunicantes/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo
9.
Front Biosci (Landmark Ed) ; 29(3): 106, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38538281

RESUMEN

BACKGROUND: Bortezomib (BTZ) is a powerful proteasome inhibitor that has been approved for the treatment of haematologic malignancies. Its effectiveness has been assessed against different types of solid tumours. BTZ is ineffective in most solid tumours because of drug resistance, including cholangiocarcinoma, which is associated with a proteasome bounce-back effect. However, the mechanism through which proteasome inhibitors induce the proteasome bounce-back effect remains largely unknown. METHODS: Cholangiocarcinoma cells were treated with BTZ, cisplatin, or a combination of both. The mRNA levels of Nfe2l1 and proteasome subunit genes (PSMA1, PSMB7, PSMD1, PSMD11, PSMD14, and PSME4) were determined using quantitative real time polymerase chain reaction (qPCR). The protein levels of nuclear factor-erythroid 2-related factor 1 (Nfe2l1) and proteasome enzyme activity were evaluated using western blotting and proteasome activity assays, respectively. Transcriptome sequencing was performed to screen for potential transcription factors that regulate Nfe2l1 expression. The effect of zinc finger E-box-binding homeobox 1 (ZEB1) on the expression of Nfe2l1 and proteasome subunit genes, as well as proteasome enzyme activity, was evaluated after the knockdown of ZEB1 expression with siRNA before treatment with BTZ. The transcriptional activity of ZEB1 on the Nfe2l1 promoter was detected using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Cell viability was measured using the cell counting kit-8 (CCK-8) assay and cell apoptosis was assessed using western blotting and flow cytometry. RESULTS: Cisplatin treatment of BTZ-treated human cholangiocarcinoma cell line (RBE) suppressed proteasome subunit gene expression (proteasome bounce-back) and proteasomal enzyme activity. This effect was achieved by reducing the levels of Nfe2l1 mRNA and protein. Our study utilised transcriptome sequencing to identify ZEB1 as an upstream transcription factor of Nfe2l1, which was confirmed using dual-luciferase reporter gene and chromatin immunoprecipitation assays. Notably, ZEB1 knockdown using siRNA (si-ZEB1) hindered the expression of proteasome subunit genes under both basal and BTZ-induced conditions, leading to the inhibition of proteasomal enzyme activity. Furthermore, the combination treatment with BTZ, cisplatin, and si-ZEB1 significantly reduced the viability of RBE cells. CONCLUSIONS: Our study uncovered a novel mechanism through which cisplatin disrupts the BTZ-induced proteasome bounce-back effect by suppressing the ZEB1/Nfe2l1 axis in cholangiocarcinoma. This finding provides a theoretical basis for developing proteasome inhibitor-based strategies for the clinical treatment of cholangiocarcinoma and other tumours.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Cisplatino/farmacología , Bortezomib/farmacología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , ARN Interferente Pequeño , Conductos Biliares Intrahepáticos/metabolismo , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Luciferasas , ARN Mensajero , Línea Celular Tumoral , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Transactivadores
10.
Redox Biol ; 69: 103003, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38150994

RESUMEN

The failure of the proper protein turnover in the nervous system is mainly linked to a variety of neurodegenerative disorders. Therefore, a better understanding of key protein degradation through the ubiquitin-proteasome system is critical for effective prevention and treatment of those disorders. The proteasome expression is tightly regulated by a CNC (cap'n'collar) family of transcription factors, amongst which the nuclear factor-erythroid 2-like bZIP factor 1 (NFE2L1, also known as Nrf1, with its long isoform TCF11 and short isoform LCR-F1) has been identified as an indispensable regulator of the transcriptional expression of the ubiquitin-proteasome system. However, much less is known about how the pivotal role of NFE2L1/Nrf1, as compared to its homologous NFE2L2 (also called Nrf2), is translated to its physiological and pathophysiological functions in the nervous system insomuch as to yield its proper cytoprotective effects against neurodegenerative diseases. The potential of NFE2L1 to fulfill its unique neuronal function to serve as a novel therapeutic target for neurodegenerative diseases is explored by evaluating the hitherto established preclinical and clinical studies of Alzheimer's and Parkinson's diseases. In this review, we have also showcased a group of currently available activators of NFE2L1, along with an additional putative requirement of this CNC-bZIP factor for healthy longevity based on the experimental evidence obtained from its orthologous SKN1-A in Caenorhabditis elegans.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades Neurodegenerativas , Animales , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ubiquitinas/metabolismo , Factor 1 Relacionado con NF-E2/genética
11.
J Bioenerg Biomembr ; 55(6): 467-478, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37848756

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe2+, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Ferroptosis , Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Proliferación Celular , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Factor 1 Relacionado con NF-E2/metabolismo
12.
Biochim Biophys Acta Gen Subj ; 1867(12): 130494, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865174

RESUMEN

NFE2L1 (also known as NRF1) is a member of the nuclear erythroid 2-like family of transcription factors and is critical for counteracting various types of cellular stress such as oxidative, proteotoxic or metabolic stress. This unique transcription factor is also known to undergo changes, including post-translational modifications, limited proteolysis or translocation into the nucleus, before it exerts full transcriptional activity. As a result, there are various molecular forms with distinct sizes for this protein, while the precise nature of each form remains elusive. In this study, the N-glycosylated status of NFE2L1 in cells was examined. The findings revealed that when NFE2L1 was deglycosylated by PNGase F, the size-shift on SDS-PAGE was minimal. This was in contrast to deglycosylation by Endo H, which resulted in a clear size-shift, even though N-linked GlcNAc residues remained on the protein. It was found that this unusual behavior of PNGase-deglycosylated NFE2L1 was dependent on the conversion of the glycosylated-Asn to Asp, resulting in the introduction of more negative charges into the core peptide of NFE2L1. We also demonstrate that NGLY1-mediated deglycosylation and DDI2-mediated proteolytic processing of NFE2L1 are not strictly ordered reactions. Our study will allow us to better understand the precise structures as well as biochemical properties of the various forms of NFE2L1.


Asunto(s)
Aminoácidos , Factores de Transcripción , Aminoácidos/metabolismo , Factores de Transcripción/metabolismo , Proteolisis , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Electroforesis en Gel de Poliacrilamida
13.
Cells ; 12(17)2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681897

RESUMEN

Podocyte cellular injury and detachment from glomerular capillaries constitute a critical factor contributing to kidney disease. Notably, transcription factors are instrumental in maintaining podocyte differentiation and homeostasis. This study explores the hitherto uninvestigated expression of Nuclear Factor Erythroid 2-related Factor 1 (NFE2L1) in podocytes. We evaluated the podocyte expression of NFE2L1, Nuclear Factor Erythroid 2-related Factor 2 (NFE2L2), and NAD(P)H:quinone Oxidoreductase (NQO1) in 127 human glomerular disease biopsies using multiplexed immunofluorescence and image analysis. We found that both NFE2L1 and NQO1 expressions were significantly diminished across all observed renal diseases. Furthermore, we exposed human immortalized podocytes and ex vivo kidney slices to Puromycin Aminonucleoside (PAN) and characterized the NFE2L1 protein isoform expression. PAN treatment led to a reduction in the nuclear expression of NFE2L1 in ex vivo kidney slices and podocytes.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Regulación de la Expresión Génica , Riñón , Glomérulos Renales , NAD , Factor 1 Relacionado con NF-E2
14.
Redox Biol ; 67: 102879, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716088

RESUMEN

Brown adipose tissue (BAT) is a major site of non-shivering thermogenesis in mammals and plays an important role in energy homeostasis. Nuclear factor-erythroid 2-related factor 1 (NFE2L1, also known as Nrf1), a master regulator of cellular metabolic homeostasis and numerous stress responses, has been found to function as a critical driver in BAT thermogenic adaption to cold or obesity by providing proteometabolic quality control. Our recent studies using adipocyte-specific Nfe2l1 knockout [Nfe2l1(f)-KO] mice demonstrated that NFE2L1-dependent transcription of lipolytic genes is crucial for white adipose tissue (WAT) homeostasis and plasticity. In the present study, we found that Nfe2l1(f)-KO mice develop an age-dependent whitening and shrinking of BAT, with signatures of down-regulation of proteasome, impaired mitochondrial function, reduced thermogenesis, pro-inflammation, and elevated regulatory cell death (RCD). Mechanistic studies revealed that deficiency of Nfe2l1 in brown adipocytes (BAC) primarily results in down-regulation of lipolytic genes, which decelerates lipolysis, making BAC unable to fuel thermogenesis. These changes lead to BAC hypertrophy, inflammation-associated RCD, and consequently cold intolerance. Single-nucleus RNA-sequencing of BAT reveals that deficiency of Nfe2l1 induces significant transcriptomic changes leading to aberrant expression of a variety of genes involved in lipid metabolism, proteasome, mitochondrial stress, inflammatory responses, and inflammation-related RCD in distinct subpopulations of BAC. Taken together, our study demonstrated that NFE2L1 serves as a vital transcriptional regulator that controls the lipid metabolic homeostasis in BAC, which in turn determines the metabolic dynamics, cellular heterogeneity and subsequently cell fates in BAT.


Asunto(s)
Tejido Adiposo Pardo , Complejo de la Endopetidasa Proteasomal , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Inflamación/metabolismo , Mamíferos/genética , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN , Termogénesis/genética
15.
Biology (Basel) ; 12(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37759569

RESUMEN

A hallmark of aging and neurodegenerative diseases is a disruption of proteome homeostasis ("proteostasis") that is caused to a considerable extent by a decrease in the efficiency of protein degradation systems. The ubiquitin proteasome system (UPS) is the major cellular pathway involved in the clearance of small, short-lived proteins, including amyloidogenic proteins that form aggregates in neurodegenerative diseases. Age-dependent decreases in proteasome subunit expression coupled with the inhibition of proteasome function by aggregated UPS substrates result in a feedforward loop that accelerates disease progression. Nuclear factor erythroid 2- like 1 (NFE2L1) is a transcription factor primarily responsible for the proteasome inhibitor-induced "bounce-back effect" regulating the expression of proteasome subunits. NFE2L1 is localized to the endoplasmic reticulum (ER), where it is rapidly degraded under basal conditions by the ER-associated degradation (ERAD) pathway. Under conditions leading to proteasome impairment, NFE2L1 is cleaved and transported to the nucleus, where it binds to antioxidant response elements (AREs) in the promoter region of proteasome subunit genes, thereby stimulating their transcription. In this review, we summarize the role of UPS impairment in aging and neurodegenerative disease etiology and consider the potential benefit of enhancing NFE2L1 function as a strategy to upregulate proteasome function and alleviate pathology in neurodegenerative diseases.

16.
Redox Biol ; 65: 102819, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473701

RESUMEN

The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.


Asunto(s)
Factor 1 Relacionado con NF-E2 , Complejo de la Endopetidasa Proteasomal , Regulación de la Expresión Génica , Factor 1 Relacionado con NF-E2/genética , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Humanos
17.
Genes Genomics ; 45(9): 1107-1115, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37405595

RESUMEN

BACKGROUND: Although cytoreductive surgery followed by adjuvant chemotherapy is effective as a standard treatment for early-stage ovarian cancer, the majority of ovarian cancer cases are diagnosed at the advanced stages with dissemination to the peritoneal cavity, leading to a poor prognosis. Therefore, it is crucial to understand the cellular and molecular mechanisms underlying metastasis and identify novel therapeutic targets. OBJECTIVE: In this study, we aimed to elucidate the mechanisms underlying gene expression alterations during the acquisition of metastatic potential and characterize the metastatic subpopulations within ovarian cancer cells. METHODS: We conducted single-cell RNA sequencing of two human ovarian cancer cell lines: SKOV-3 and SKOV-3-13, a highly metastatic subclone of SKOV-3. Suppression of NFE2L1 expression was performed through siRNA-mediated knockdown and CRISPR-Cas9-mediated knockout. RESULTS: Clustering and pseudotime trajectory analysis revealed pro-metastatic subpopulation within these cells. Furthermore, gene set enrichment analysis and prognosis analysis indicated that NFE2L1 could be a key transcription factor in the acquisition of metastasis potential. Inhibition of NFE2L1 significantly reduced migration and viability of both cells. In addition, NFE2L1 knockout cells exhibited significantly reduced tumor growth in a mouse xenograft model, recapitulating in silico and in vitro results. CONCLUSION: The results presented in this study deepen our understanding of the molecular pathogenesis of ovarian cancer metastasis with the ultimate goal of developing treatments targeting pro-metastatic subclones prior to metastasis.


Asunto(s)
Neoplasias Ováricas , Factores de Transcripción , Humanos , Animales , Ratones , Femenino , Factores de Transcripción/genética , Línea Celular Tumoral , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Análisis de Secuencia de ARN , Factor 1 Relacionado con NF-E2/genética
18.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298331

RESUMEN

Proteasome inhibitors (PIs) have emerged as an attractive novel cancer therapy. However, most solid cancers are seemingly resistant to PIs. The activation of transcription factor Nuclear factor erythroid 2 related factor-1 (NFE2L1) has been characterized as a potential resistance response to protect and restore proteasome activity in cancer cells. In this study, we demonstrated that α-Tocotrienol (T3) and redox-silent analogs of vitamin E (TOS, T3E) enhanced the sensitivity of bortezomib (BTZ), a proteasome inhibitor, in solid cancers through modulation of NFE2L1. In BTZ treatment, all of T3, TOS, and T3E inhibited an increase in the protein levels of NFE2L1, the expression levels of proteasome-related proteins, as well as the recovery of proteasome activity. Moreover, the combination of one of T3, TOS, or T3E and BTZ induced a significant decrease in cell viability in solid cancer cell lines. These findings suggested that the inactivation of NFE2L1 by T3, TOS, and T3E is essential to potentiate the cytotoxic effect of the proteasome inhibitor, BTZ, in solid cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Bortezomib/farmacología , Inhibidores de Proteasoma/farmacología , Vitamina E/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Oxidación-Reducción , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico
19.
Stem Cell Rev Rep ; 19(6): 1994-2012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37243831

RESUMEN

Premature ovarian failure (POF) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Mesenchymal stromal cells-derived exosomes (MSCs-Exos) have an essential role in the treatment of reproductive disorders, particularly POF. However, the biological function and therapeutic mechanism of MSCs exosomal circRNAs in POF remain to be determined. Here, with bioinformatics analysis and functional assays, circLRRC8A was found to be downregulated in senescent granulosa cells (GCs) and acted as a crucial factor in MSCs-Exos for oxidative damage protection and anti-senescence of GCs in vitro and in vivo. Mechanistic investigations revealed that circLRRC8A served as an endogenous miR-125a-3p sponge to downregulate NFE2L1 expression. Moreover, eukaryotic initiation factor 4A3 (EIF4A3), acting as a pre-mRNA splicing factor, promoted circLRRC8A cyclization and expression by directly binding to the LRRC8A mRNA transcript. Notably, EIF4A3 silencing reduced circLRRC8A expression and attenuated the therapeutic effect of MSCs-Exos on oxidatively damaged GCs. This study demonstrates a new therapeutic pathway for cellular senescence protection against oxidative damage by delivering circLRRC8A-enriched exosomes through the circLRRC8A/miR-125a-3p/NFE2L1 axis and paves the way for the establishment of a cell-free therapeutic approach for POF. CircLRRC8A may be a promising circulating biomarker for diagnosis and prognosis and an exceptional candidate for further therapeutic exploration.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Insuficiencia Ovárica Primaria , Humanos , Femenino , MicroARNs/genética , MicroARNs/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal , Insuficiencia Ovárica Primaria/metabolismo , Células de la Granulosa/metabolismo , Factor 1 Relacionado con NF-E2/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de la Membrana/metabolismo
20.
J Mol Histol ; 53(4): 729-740, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35727472

RESUMEN

Cisplatin, a first-line chemotherapeutic agent commonly used to treat various solid tumors, induce severe adverse effects, especially nephrotoxicity, which largely limits its clinical application. However, the currently used measures to prevent nephrotoxicity are not ideal owing to the mechanisms underlying cisplatin-induced nephrotoxicity are not comprehensively understood. Herein, we examined the effects of silibinin on cisplatin-induced nephrotoxicity and found that silibinin exerted cytoprotection effects during cisplatin treatment in HEK293 cells and in a cisplatin-induced acute kidney injury (AKI) model. Mechanistically, silibinin ameliorated cisplatin-induced AKI via decreasing ROS-mediated MAPK signaling pathway activation, which was confirmed using the inhibitor N-acetylcysteine. Moreover, the protective effect of silibinin against cisplatin-induced ROS generation through the antioxidant transcription factor nuclear factor-erythroid 2-related factor 1 (Nfe2l1), rather than Nfe2l2, mediates HO1 expression. Furthermore, interference with the abundance of Nfe2l1 using siRNA or an overexpression plasmid enhanced or decreased the effect of cisplatin-induced apoptosis, respectively, in HEK293 cells. Interestingly, Nfe2l1 protein stability was more sensitive to cisplatin than that of Nfe2l2. More importantly, the mechanism that silibinin activates Nfe2l1-mediated antioxidant responses was confirmed in a cisplatin-induced AKI model. Silibinin rescued cisplatin-induced Nfe2l1 inhibition by regulating its transcription and post-translational modifications. Taken together, our results reveal a novel mechanism by which silibinin ameliorates cisplatin-induced AKI via activating Nfe2l1-mediated antioxidative response, which provides a new insights to protect patients receiving cisplatin-based cancer treatment against AKI.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Cisplatino/efectos adversos , Células HEK293 , Humanos , Riñón/patología , Factor 1 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Silibina/metabolismo , Silibina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA