Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(6): 2187-2200, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39036838

RESUMEN

The superior productivity of C4 plants is achieved via a metabolic C4 cycle which acts as a CO2 pump across mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP. The importance of chloroplast NADH dehydrogenase-like complex (NDH) operating cyclic electron flow (CEF) around Photosystem I (PSI) for C4 photosynthesis has been shown in reverse genetics studies but the contribution of CEF and NDH to cell-level electron fluxes remained unknown. We have created gene-edited Setaria viridis with null ndhO alleles lacking functional NDH and developed methods for quantification of electron flow through NDH in BS and mesophyll cells. We show that CEF accounts for 84% of electrons reducing PSI in BS cells and most of those electrons are delivered through NDH while the contribution of the complex to electron transport in mesophyll cells is minimal. A decreased leaf CO2 assimilation rate and growth of plants lacking NDH cannot be rescued by supplying additional CO2. Our results indicate that NDH-mediated CEF is the primary electron transport route in BS chloroplasts highlighting the essential role of NDH in generating ATP required for CO2 fixation by the C3 cycle in BS cells.


Asunto(s)
Cloroplastos , NADH Deshidrogenasa , Complejo de Proteína del Fotosistema I , Transporte de Electrón , Cloroplastos/metabolismo , NADH Deshidrogenasa/metabolismo , NADH Deshidrogenasa/genética , Complejo de Proteína del Fotosistema I/metabolismo , Setaria (Planta)/metabolismo , Setaria (Planta)/genética , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Fotosíntesis , Haz Vascular de Plantas/metabolismo , Hojas de la Planta/metabolismo
2.
BMC Plant Biol ; 24(1): 303, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644497

RESUMEN

BACKGROUND: Corydalis DC., the largest genus in the family Papaveraceae, comprises > 465 species. Complete plastid genomes (plastomes) of Corydalis show evolutionary changes, including syntenic arrangements, gene losses and duplications, and IR boundary shifts. However, little is known about the evolution of the mitochondrial genome (mitogenome) in Corydalis. Both the organelle genomes and transcriptomes are needed to better understand the relationships between the patterns of evolution in mitochondrial and plastid genomes. RESULTS: We obtained complete plastid and mitochondrial genomes from Corydalis pauciovulata using a hybrid assembly of Illumina and Oxford Nanopore Technologies reads to assess the evolutionary parallels between the organelle genomes. The mitogenome and plastome of C. pauciovulata had sizes of 675,483 bp and 185,814 bp, respectively. Three ancestral gene clusters were missing from the mitogenome, and expanded IR (46,060 bp) and miniaturized SSC (202 bp) regions were identified in the plastome. The mitogenome and plastome of C. pauciovulata contained 41 and 67 protein-coding genes, respectively; the loss of genes was a plastid-specific event. We also generated a draft genome and transcriptome for C. pauciovulata. A combination of genomic and transcriptomic data supported the functional replacement of acetyl-CoA carboxylase subunit ß (accD) by intracellular transfer to the nucleus in C. pauciovulata. In contrast, our analyses suggested a concurrent loss of the NADH-plastoquinone oxidoreductase (ndh) complex in both the nuclear and plastid genomes. Finally, we performed genomic and transcriptomic analyses to characterize DNA replication, recombination, and repair (DNA-RRR) genes in C. pauciovulata as well as the transcriptomes of Liriodendron tulipifera and Nelumbo nuicifera. We obtained 25 DNA-RRR genes and identified their structure in C. pauciovulata. Pairwise comparisons of nonsynonymous (dN) and synonymous (dS) substitution rates revealed that several DNA-RRR genes in C. pauciovulata have higher dN and dS values than those in N. nuicifera. CONCLUSIONS: The C. pauciovulata genomic data generated here provide a valuable resource for understanding the evolution of Corydalis organelle genomes. The first mitogenome of Papaveraceae provides an example that can be explored by other researchers sequencing the mitogenomes of related plants. Our results also provide fundamental information about DNA-RRR genes in Corydalis and their related rate variation, which elucidates the relationships between DNA-RRR genes and organelle genome stability.


Asunto(s)
Corydalis , Genoma Mitocondrial , Genoma de Plastidios , Corydalis/genética , Evolución Molecular , Filogenia , Genoma de Planta , Transcriptoma
3.
Plant Physiol Biochem ; 207: 108420, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38324953

RESUMEN

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C4 plant maize (Zea mays) or OsNdhl from C3 plant rice (Oryza sativa) using a constitutive promoter in rice. Transgenic rice lines expressing ZmNdhl1, ZmNdhl2, or OsNdhl displayed enhanced salt tolerance, as indicated by greater plant height, dry weight, and leaf relative water content, as well as lower malondialdehyde content compared to wild-type plants under salt stress. Fluorescence parameters such as post-illumination rise (PIR), the prompt chlorophyll a fluorescence transient (OJIP), modulated 820-nm reflection (MR), and delayed chlorophyll a fluorescence (DF) remained relatively normal in transgenic plants during salt stress. These results indicate that expression of ZmNdhl1, ZmNdhl2, or OsNdhl increases cyclic electron transport activity, slows down damage to linear electron transport, alleviates oxidative damage to the PSI reaction center and plastocyanin, and reduces damage to electron transport on the receptor side of PSI in rice leaves under salt stress. Thus, expression of Ndhl genes from maize or rice improves salt tolerance by enhancing photosynthetic electron transport in rice. Maize and rice Ndhl genes played a similar role in enhancing salinity tolerance and avoiding photosynthetic damage.


Asunto(s)
Oryza , Tolerancia a la Sal , Transporte de Electrón , Tolerancia a la Sal/genética , Clorofila A/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo , Oryza/genética , Oryza/metabolismo
4.
New Phytol ; 241(1): 82-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37872738

RESUMEN

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Asunto(s)
Carbono , NADH Deshidrogenasa , Carbono/metabolismo , NADH Deshidrogenasa/metabolismo , Zea mays/genética , Zea mays/metabolismo , Malatos/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Proteómica , Fotosíntesis , Oxidación-Reducción , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Hojas de la Planta/metabolismo
5.
Front Plant Sci ; 14: 1267191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023894

RESUMEN

In order to cope with the impact of global warming and frequent extreme weather, thermal acclimation ability is particularly important for plant development and growth, but the mechanism behind is still not fully understood. To investigate the role of NADH dehydrogenase-like complex (NDH) mediated cyclic electron flow (CEF) contributing to heat acclimation, wild type (WT) tobacco (Nicotiana tabacum) and its NDH-B or NDH-C, J, K subunits deficient mutants (ΔB or ΔCJK) were grown at 25/20°C before being shifted to a moderate heat stress environment (35/30°C). The photosynthetic performance of WT and ndh mutants could all eventually acclimate to the increased temperature, but the acclimation process of ndh mutants took longer. Transcriptome profiles revealed that ΔB mutant exhibited distinct photosynthetic-response patterns and stress-response genes compared to WT. Metabolite analysis suggested over-accumulated reducing power and production of more reactive oxygen species in ΔB mutant, which were likely associated with the non-parallel recovery of CO2 assimilation and light reactions shown in ΔB mutant during heat acclimation. Notably, in the warm night periods that could happen in the field, NDH pathway may link to the re-balance of excess reducing power accumulated during daytime. Thus, understanding the diurnal cycle contribution of NDH-mediated CEF for thermal acclimation is expected to facilitate efforts toward enhanced crop fitness and survival under future climates.

6.
Plant J ; 116(3): 706-716, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37493543

RESUMEN

Cyclic electron transport (CET) around photosystem I (PSI) is crucial for photosynthesis to perform photoprotection and sustain the balance of ATP and NADPH. However, the critical component of CET, cyt b6 f complex (cyt b6 f), functions in CET has yet to be understood entirely. In this study, we found that NdhS, a subunit of NADPH dehydrogenase-like (NDH) complex, interacted with cyt b6 f to form a complex in Arabidopsis. This interaction depended on the N-terminal extension of NdhS, which was conserved in eukaryotic plants but defective in prokaryotic algae. The migration of NdhS was much more in cyt b6 f than in PSI-NDH super-complex. Based on these results, we suggested that NdhS and NADP+ oxidoreductase provide a docking domain for the mobile electron carrier ferredoxin to transfer electrons to the plastoquinone pool via cyt b6 f in eukaryotic photosynthesis.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Complejo de Citocromo b6f/metabolismo , Citocromos b , Transporte de Electrón , Ferredoxinas/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema I/metabolismo
7.
Front Plant Sci ; 14: 1061434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123850

RESUMEN

Plants have multiple mechanisms to maintain efficient photosynthesis. Photosynthetic cyclic electron transports around photosystem I (CET), which includes the PGR5/PGRL1 and NDH pathways, and photorespiration play a crucial role in photosynthetic efficiency. However, how these two mechanisms are functionally linked is not clear. In this study, we revealed that photorespiration could compensate for the function of CET in efficient photosynthesis by comparison of the growth phenotypes, photosynthetic properties monitored with chlorophyll fluorescence parameters and photosynthetic oxygen evolution in leaves and photorespiratory activity monitored with the difference of photosynthetic oxygen evolution rate under high and low concentration of oxygen conditions between the deleted mutant PGR5 or PGRL1 under NDH defective background (pgr5 crr2 or pgrl1a1b crr2). Both CET mutants pgr5 crr2 and pgrl1a1b crr2 displayed similar suppression effects on photosynthetic capacities of light reaction and growth phenotypes under low light conditions. However, the total CET activity and photosynthetic oxygen evolution of pgr5 crr2 were evidently lower than those of pgrl1a1b crr2, accompanied by the upregulation of photorespiratory activity under low light conditions, resulting in severe suppression of photosynthetic capacities of light reaction and finally photodamaged phenotype under high light or fluctuating light conditions. Based on these findings, we suggest that photorespiration compensates for the loss of CET functions in the regulation of photosynthesis and that coordination of both mechanisms is essential for maintaining the efficient operation of photosynthesis, especially under stressed conditions.

8.
Mol Plant ; 15(3): 454-467, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35123031

RESUMEN

Cyclic electron transport/flow (CET/CEF) in chloroplasts is a regulatory process essential for the optimization of plant photosynthetic efficiency. A crucial CEF pathway is catalyzed by a membrane-embedded NADH dehydrogenase-like (NDH) complex that contains at least 29 protein subunits and associates with photosystem I (PSI) to form the NDH-PSI supercomplex. Here, we report the 3.9 Å resolution structure of the Arabidopsis thaliana NDH-PSI (AtNDH-PSI) supercomplex. We constructed structural models for 26 AtNDH subunits, among which 11 are unique to chloroplasts and stabilize the core part of the NDH complex. In the supercomplex, one NDH can bind up to two PSI-light-harvesting complex I (PSI-LHCI) complexes at both sides of its membrane arm. Two minor LHCIs, Lhca5 and Lhca6, each present in one PSI-LHCI, interact with NDH and contribute to supercomplex formation and stabilization. Collectively, our study reveals the structural details of the AtNDH-PSI supercomplex assembly and provides a molecular basis for further investigation of the regulatory mechanism of CEF in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , NADH Deshidrogenasa/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo
9.
Front Plant Sci ; 13: 1075098, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605947

RESUMEN

Plastomes may have undergone adaptive evolution in the process of plant adaptation to diverse environments, whereby species may differ in plastome characters. Cypripedioideae successfully colonized distinct environments and could be an ideal group for studying the interspecific variation and adaptive evolution of plastomes. Comparative study of plastomes, ancestral state reconstruction, phylogenetic-based analysis, ecological niche modelling, and selective pressure analysis were conducted to reveal the evolutionary patterns of plastomes in Cypripedioideae and their relationship with environmental factors. The plastomes of the three evolved genera had reduced plastome size, increased GC content, and compacted gene content compared to the basal group. Variations in plastome size and GC content are proved to have clear relationships with climate regions. Furthermore, ecological niche modelling revealed that temperature and water factors are important climatic factors contributing to the distributional difference which is directly correlated with the climate regions. The temperature-sensitive genes ndh genes, infA, and rpl20 were found to be either lost/pseudogenized or under positive selection in the evolved groups. Unparalleled plastome character variations were discovered in slipper orchids. Our study indicates that variations in plastome characters have adaptive consequences and that temperature and water factors are important climatic factors that affect plastome evolution. This research highlights the expectation that plants can facilitate adaptation to different environmental conditions with the changes in plastome and has added critical insight for understanding the process of plastome evolution in plants.

10.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830386

RESUMEN

The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.


Asunto(s)
Cloroplastos/genética , NADH Deshidrogenasa/genética , Fotosíntesis/genética , Plastidios/genética , Carofíceas/genética , Genes del Cloroplasto/genética , Senescencia de la Planta/genética , Plastidios/metabolismo , Tilacoides/enzimología , Tilacoides/genética
11.
Plant Cell Environ ; 44(11): 3681-3699, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331318

RESUMEN

Chloroplasts play crucial roles in plant defence against viral infection. We now report that chloroplast NADH dehydrogenase-like (NDH) complex M subunit gene (NdhM) was first up-regulated and then down-regulated in turnip mosaic virus (TuMV)-infected N. benthamiana. NbNdhM-silenced plants were more susceptible to TuMV, whereas overexpression of NbNdhM inhibited TuMV accumulation. Overexpression of NbNdhM significantly induced the clustering of chloroplasts around the nuclei and disturbing this clustering facilitated TuMV infection, suggesting that the clustering mediated by NbNdhM is a defence against TuMV. It was then shown that NbNdhM interacted with TuMV VPg, and that the NdhMs of different plant species interacted with the proteins of different viruses, implying that NdhM may be a common target of viruses. In the presence of TuMV VPg, NbNdhM, which is normally localized in the nucleus, chloroplasts, cell periphery and chloroplast stromules, colocalized with VPg at the nucleus and nucleolus, with significantly increased nuclear accumulation, while NbNdhM-mediated chloroplast clustering was significantly impaired. This study therefore indicates that NbNdhM has a defensive role in TuMV infection probably by inducing the perinuclear clustering of chloroplasts, and that the localization of NbNdhM is altered by its interaction with TuMV VPg in a way that promotes virus infection.


Asunto(s)
Cloroplastos/virología , Nicotiana/virología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Núcleo Celular/virología
12.
Mol Phylogenet Evol ; 164: 107269, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324956

RESUMEN

Goodyerinae are one of phylogenetically unresolved groups of Orchidaceae. The lack of resolution achieved through the analyses of previous molecular sequences from one or a few markers has long confounded phylogenetic estimation and generic delimitation. Here, we present large-scale phylogenomic data to compare the plastome structure of the two main clades (Goodyera and Cheirostylis) in this subtribe and further adopt two strategies, combining plastid coding sequences and the whole plastome, to investigate phylogenetic relationships. A total of 46 species in 16 genera were sampled, including 39 species in 15 genera sequenced in this study. The plastomes of heterotrophic species are not drastically reduced in overall size, but display a pattern congruent with a loss of photosynthetic function. The plastomes of autotrophic species ranged from 147 to 165 kb and encoded from 132 to 137 genes. Three unusual structural features were detected: a 1.0-kb inversion in the large single-copy region of Goodyera schlechtendaliana; the loss and/or pseudogenization of ndh genes only in two species, Cheirostylis chinensis and C. montana; and the expansion of inverted repeat regions and contraction of small single-copy region in Hetaeria oblongifolia. Phylogenomic analyses provided improved resolution for phylogenetic relationships. All genera were recovered as monophyletic, except for Goodyera and Hetaeria, which were each recovered as non-monophyletic. Nomenclatural changes are needed until the broader sampling and biparental inherited markers. This study provides a phylogenetic framework of Goodyerinae and insight into plastome evolution of Orchidaceae.


Asunto(s)
Genoma de Plastidios , Orchidaceae , Secuencia de Bases , Evolución Molecular , Orchidaceae/genética , Filogenia , Plastidios/genética
13.
J Exp Bot ; 72(13): 4904-4914, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33872351

RESUMEN

The processing of chloroplast RNA requires a large number of nuclear-encoded RNA-binding proteins (RBPs) that are imported post-translationally into the organelle. The chloroplast ribonucleoprotein 31A (CP31A) supports RNA editing at 13 sites and also supports the accumulation of multiple chloroplast mRNAs. In cp31a mutants it is the ndhF mRNA (coding for a subunit of the NDH complex) that is most strongly affected. CP31A becomes particularly important at low temperatures, where it is essential for chloroplast development in young tissue. Next to two RNA-recognition motifs (RRMs), CP31A has an N-terminal acidic domain that is phosphorylated at several sites. We investigated the function of the acidic domain in the role of CP31A in RNA metabolism and cold resistance. Using point mutagenesis, we demonstrate that the known phosphorylation sites within the acidic domain are irrelevant for any of the known functions of CP31A, both at normal and at low temperatures. Even when the entire acidic domain is removed, no effects on RNA editing were observed. By contrast, loss of the acidic domain reduced the ability of CP31A to stabilize the ndhF mRNA, which was associated with reduced NDH complex activity. Most importantly, acidic domain-less CP31A lines displayed bleached young tissue in the cold. Together, these data show that the different functions of CP31A can be assigned to different regions of the protein: the RRMs are sufficient to maintain RNA editing and to allow the accumulation of basal amounts of ndhF mRNA, while chloroplast development under cold conditions critically depends on the acidic domain.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , ARN del Cloroplasto , Proteínas de Unión al ARN/genética
14.
Ecol Evol ; 11(7): 3286-3299, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33841784

RESUMEN

The structure and sequence of plastid genomes is highly conserved across most land plants, except for a minority of lineages that show gene loss and genome degradation. Understanding the early stages of plastome degradation may provide crucial insights into the repeatability and predictability of genomic evolutionary trends. We investigated these trends in subtribe Gentianinae of the Gentianaceae, which encompasses ca. 450 species distributed around the world, particularly in alpine and subalpine environments. We sequenced, assembled, and annotated the plastomes of 41 species, representing all six genera in subtribe Gentianinae and all main sections of the species-rich genus Gentiana L. We reconstructed the phylogeny, estimated divergence times, investigated the phylogenetic distribution of putative gene losses, and related these to substitution rate shifts and species' habitats. We obtained a strongly supported topology consistent with earlier studies, with all six genera in Gentianinae recovered as monophyletic and all main sections of Gentiana having full support. While closely related species have very similar plastomes in terms of size and structure, independent gene losses, particularly of the ndh complex, have occurred in multiple clades across the phylogeny. Gene loss was usually associated with a shift in the boundaries of the small single-copy and inverted repeat regions. Substitution rates were variable between clades, with evidence for both elevated and decelerated rate shifts. Independent lineage-specific loss of ndh genes occurred at a wide range of times, from Eocene to Pliocene. Our study illustrates that diverse degradation patterns shape the evolution of the plastid in this species-rich plant group.

15.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562320

RESUMEN

Chloroplast ribonucleoproteins (cpRNPs) are nuclear-encoded and highly abundant proteins that are proposed to function in chloroplast RNA metabolism. However, the molecular mechanisms underlying the regulation of chloroplast RNAs involved in stress tolerance are poorly understood. Here, we demonstrate that CHLOROPLAST RNA-BINDING PROTEIN 1 (OsCRP1), a rice (Oryza sativa) cpRNP gene, is essential for stabilization of RNAs from the NAD(P)H dehydrogenase (NDH) complex, which in turn enhances drought and cold stress tolerance. An RNA-immunoprecipitation assay revealed that OsCRP1 is associated with a set of chloroplast RNAs. Transcript profiling indicated that the mRNA levels of genes from the NDH complex significantly increased in the OsCRP1 overexpressing compared to non-transgenic plants, whereas the pattern in OsCRP1 RNAi plants were opposite. Importantly, the OsCRP1 overexpressing plants showed a higher cyclic electron transport (CET) activity, which is essential for elevated levels of ATP for photosynthesis. Additionally, overexpression of OsCRP1 resulted in significantly enhanced drought and cold stress tolerance with higher ATP levels compared to wild type. Thus, our findings suggest that overexpression of OsCRP1 stabilizes a set of mRNAs from genes of the NDH complex involved in increasing CET activity and production of ATP, which consequently confers enhanced drought and cold tolerance.


Asunto(s)
Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Frío , Sequías , Oryza/crecimiento & desarrollo , Estabilidad del ARN , Ribonucleoproteínas/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fotosíntesis , Ribonucleoproteínas/genética , Estrés Fisiológico
16.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781615

RESUMEN

Chloroplast RNA processing requires a large number of nuclear-encoded RNA binding proteins (RBPs) that are imported post-translationally into the organelle. Most of these RBPs are highly specific for one or few target RNAs. By contrast, members of the chloroplast ribonucleoprotein family (cpRNPs) have a wider RNA target range. We here present a quantitative analysis of RNA targets of the cpRNP CP31A using digestion-optimized RNA co-immunoprecipitation with deep sequencing (DO-RIP-seq). This identifies the mRNAs coding for subunits of the chloroplast NAD(P)H dehydrogenase (NDH) complex as main targets for CP31A. We demonstrate using whole-genome gene expression analysis and targeted RNA gel blot hybridization that the ndh mRNAs are all down-regulated in cp31a mutants. This diminishes the activity of the NDH complex. Our findings demonstrate how a chloroplast RNA binding protein can combine functionally related RNAs into one post-transcriptional operon.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Cloroplastos/metabolismo , NADPH Deshidrogenasa/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Subunidades de Proteína/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
17.
Ann Bot ; 125(7): 1091-1099, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32157271

RESUMEN

BACKGROUND AND AIMS: Nitrate can stimulate seed germination of many plant species in the absence of light; however, the molecular mechanism of nitrate-promoted seed germination in the dark remains largely unclear and no component of this pathway has been identified yet. Here, we show that a plastid J-domain protein, DJC75/CRRJ, in arabidopsis (Arabidopsis thaliana) is important for nitrate-promoted seed germination in the dark. METHODS: The expression of DJC75 during imbibition in the dark was investigated. The seed germination rate of mutants defective in DJC75 was determined in the presence of nitrate when light cues for seed germination were eliminated by the treatment of imbibed seeds with a pulse of far-red light to inactivate phytochrome B (phyB), or by assaying germination in the dark with seeds harbouring the phyB mutation. The germination rates of mutants defective in CRRL, a J-like protein related to DJC75, and in two chloroplast Hsp70s were also measured in the presence of nitrate in darkness. KEY RESULTS: DJC75 was expressed during seed imbibition in the absence of light. Mutants defective in DJC75 showed seed germination defects in the presence of nitrate when light cues for seed germination were eliminated. Mutants defective in CRRL and in two chloroplast Hsp70s also exhibited similar seed germination defects. Upregulation of gibberellin biosynthetic gene GA3ox1 expression by nitrate in imbibed phyB mutant seeds was diminished when DJC75 was knocked out. CONCLUSIONS: Our data suggest that plastid J-domain protein DJC75 regulates nitrate-promoted seed germination in the dark by upregulation of expression of the gibberellin biosynthetic gene GA3ox1 through an unknown mechanism and that DJC75 may work in concert with chloroplast Hsp70s to regulate nitrate-promoted seed germination. DJC75 is the first pathway component identified for nitrate-promoted seed germination in the dark.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas
18.
Proc Biol Sci ; 286(1909): 20191491, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31431166

RESUMEN

Pyruvate : ferredoxin oxidoreductase (PFO) and iron only hydrogenase ([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit anaerobic niches. Their function is to maintain redox balance by donating electrons from food oxidation via ferredoxin (Fd) to protons, generating H2 as a waste product. Operating in series, they constitute a soluble electron transport chain of one-electron transfers between FeS clusters. They fulfil the same function-redox balance-served by two electron-transfers in the NADH- and O2-dependent respiratory chains of mitochondria. Although they possess O2-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among numerous algae that produce O2. The evolutionary persistence of these enzymes among eukaryotic aerobes is traditionally explained as adaptation to facultative anaerobic growth. Here, we show that algae express enzymes of anaerobic energy metabolism at ambient O2 levels (21% v/v), Chlamydomonas reinhardtii expresses them with diurnal regulation. High O2 environments arose on Earth only approximately 450 million years ago. Gene presence/absence and gene expression data indicate that during the transition to high O2 environments and terrestrialization, diverse algal lineages retained enzymes of Fd-dependent one-electron-based redox balance, while the land plant and land animal lineages underwent irreversible specialization to redox balance involving the O2-insensitive two-electron carrier NADH.


Asunto(s)
Adaptación Fisiológica/fisiología , Chlamydomonas reinhardtii/fisiología , Ferredoxinas/metabolismo , NAD/metabolismo , Anaerobiosis , Animales , Transporte de Electrón , Metabolismo Energético , Hidrogenasas , Proteínas Hierro-Azufre , Oxígeno/metabolismo
19.
BMC Evol Biol ; 19(1): 63, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808310

RESUMEN

BACKGROUND: The plastid is a semiautonomous organelle with its own genome. Plastid genomes have been widely used as models for studying phylogeny, speciation and adaptive evolution. However, most studies focus on comparisons of plastid genome evolution at high taxonomic levels, and comparative studies of the process of plastome evolution at the infrageneric or intraspecific level remain elusive. Holcoglossum is a small genus of Orchidaceae, consisting of approximately 20 species of recent radiation. This made it an ideal group to explore the plastome mutation mode at the infrageneric or intraspecific level. RESULTS: In this paper, we reported 15 complete plastid genomes from 12 species of Holcoglossum and 1 species of Vanda. The plastid genomes of Holcoglossum have a total length range between 145 kb and 148 kb, encoding a set of 102 genes. The whole set of ndh-gene families in Holcoglossum have been truncated or pseudogenized. Hairpin inversion in the coding region of the plastid gene ycf2 has been found. CONCLUSIONS: Using a comprehensive comparative plastome analysis, we found that all the indels between different individuals of the same species resulted from the copy number variation of the short repeat sequence, which may be caused by replication slippage. Annotation of tandem repeats shows that the variation introduced by tandem repeats is widespread in plastid genomes. The hairpin inversion found in the plastid gene ycf2 occurred randomly in the Orchidaceae.


Asunto(s)
Genoma de Plastidios , Orchidaceae/genética , Variaciones en el Número de Copia de ADN , Evolución Molecular , Mutación INDEL , Sistemas de Lectura Abierta , Orchidaceae/clasificación , Filogenia , Plastidios , Secuencias Repetitivas de Ácidos Nucleicos
20.
Plant J ; 90(5): 994-1006, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28258650

RESUMEN

The chloroplast NAD(P)H dehydrogenase-like (NDH) complex consists of about 30 subunits from both the nuclear and chloroplast genomes and is ubiquitous across most land plants. In some orchids, such as Phalaenopsis equestris, Dendrobium officinale and Dendrobium catenatum, most of the 11 chloroplast genome-encoded ndh genes (cp-ndh) have been lost. Here we investigated whether functional cp-ndh genes have been completely lost in these orchids or whether they have been transferred and retained in the nuclear genome. Further, we assessed whether both cp-ndh genes and nucleus-encoded NDH-related genes can be lost, resulting in the absence of the NDH complex. Comparative analyses of the genome of Apostasia odorata, an orchid species with a complete complement of cp-ndh genes which represents the sister lineage to all other orchids, and three published orchid genome sequences for P. equestris, D. officinale and D. catenatum, which are all missing cp-ndh genes, indicated that copies of cp-ndh genes are not present in any of these four nuclear genomes. This observation suggests that the NDH complex is not necessary for some plants. Comparative genomic/transcriptomic analyses of currently available plastid genome sequences and nuclear transcriptome data showed that 47 out of 660 photoautotrophic plants and all the heterotrophic plants are missing plastid-encoded cp-ndh genes and exhibit no evidence for maintenance of a functional NDH complex. Our data indicate that the NDH complex can be lost in photoautotrophic plant species. Further, the loss of the NDH complex may increase the probability of transition from a photoautotrophic to a heterotrophic life history.


Asunto(s)
Genoma del Cloroplasto/genética , Genoma de Planta/genética , Orchidaceae/genética , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA