Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
J Pak Med Assoc ; 74(6): 1046-1050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948969

RESUMEN

OBJECTIVE: To compare the effects of magnesium sulphate on the total dose of intravenous morphine consumption postoperatively following limb amputations along with rescue analgesia requirement, pain scores and side effects. METHODS: This prospective, triple-blinded, randomised controlled study was conducted from October 2021 to May 2022 at the Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan, and comprised of patients scheduled for limb amputations. They were randomised into 2 equal groups. The anaesthesia protocol was uniform for all patients. Intervention group A was administered 30mg/kg loading dose and 10mg/kg/hr maintenance dose of magnesium sulphate intravenously, while patients in control group B received the same amount of plain isotonic saline. Morphine consumption, including that used for rescue analgesia and patient-controlled analgesia, was measured for 24 hours postoperatively. Numeric rating scale was used for the evaluation of postoperative pain in both groups at 15min, 1h, 2h, at discharge from the post-anaesthesia care unit and at 12h and 24h in the ward. Data was analysed using SPSS 23. RESULTS: Of the 24 patients enrolled, the study was completed by 20(83.33%). There were 10(50%) patients in group A; 8(40%) males and 2(20%) females with mean age 24.8±14.14 years and mean surgery time 130.5±47.86 minutes. There were 10(50%) patients in group B; 8(40%) males and 2(20%) females with mean age 23.2±7.4 years and mean surgery time 117±23.85 minutes (p>0.05). Total morphine used over 24 hours in group A was 16±3.1 mg compared to 29.6±11.2 mg in group B (p<0.05). The time for first use of patient-controlled analgesia after arriving in the postanaesthesia care unit was significantly delayed in group A (72.2±24.95 minutes) compared to that in group B (25±26.68 minutes) (p<0.05). Pain scores were significantly higher in the group B at 15min compared to group A (p<0.05), but not at the rest of the time points (p>0.05). CONCLUSIONS: Intravenous magnesium sulphate proved to be effective in lowering postoperative opioid requirement following limb amputations.


Asunto(s)
Amputación Quirúrgica , Analgésicos Opioides , Sulfato de Magnesio , Morfina , Dimensión del Dolor , Dolor Postoperatorio , Humanos , Dolor Postoperatorio/tratamiento farmacológico , Sulfato de Magnesio/administración & dosificación , Sulfato de Magnesio/uso terapéutico , Femenino , Masculino , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/administración & dosificación , Adulto , Morfina/administración & dosificación , Morfina/uso terapéutico , Estudios Prospectivos , Persona de Mediana Edad , Analgesia Controlada por el Paciente/métodos , Adulto Joven , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/prevención & control
2.
Clin Breast Cancer ; 24(7): e605-e612, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38918160

RESUMEN

BACKGROUND: Chronic postoperative surgical pain (CPSP) is a frequent complication following breast surgery and poses a challenge in terms of treatment. We hypothesized that the incidence of CPSP would be reduced at 3 months post-breast surgery with the administration of S-ketamine compared to a placebo. PATIENTS AND METHODS: Participants were recruited and randomly assigned to either the S-ketamine group (S) or the control group (C). In group S, S-ketamine was administered as a 1.5 mg kg-1 bolus followed by 2 mg kg-1h-1 infusion, while in group C, a placebo of 0.9% saline was administered in the same volume and rate as S-ketamine. The primary outcome was the incidence of CPSP, measured using a 0-10 numeric rating scale (NRS), at 3 months postsurgery. RESULTS: A total of 72 patients scheduled for mastectomy were enrolled (group S, n = 33; group C, n = 32). The incidence of CPSP at 3 months postsurgery was significantly lower in group S compared to group C (18.2% vs. 48.3%, P < .05). There was no statistical difference between the 2 groups in terms of the incidence of moderate to severe pain. NRS scores for postoperative pain at rest and during movement were significantly lower at 4 h and 24 h post-surgery (P < .05, respectively). Patients in Group S had lower Patient Health Questionnaire-9 (PHQ-9) scores at one week and 3 months post-surgery compared to Group C (P < .05, respectively). CONCLUSION: S-ketamine infusion reduces the incidence of CPSP 3 months after breast surgery.


Asunto(s)
Neoplasias de la Mama , Ketamina , Mastectomía , Dolor Postoperatorio , Humanos , Ketamina/administración & dosificación , Ketamina/uso terapéutico , Femenino , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Dolor Postoperatorio/etiología , Neoplasias de la Mama/cirugía , Método Doble Ciego , Persona de Mediana Edad , Mastectomía/efectos adversos , Adulto , Analgésicos/administración & dosificación , Analgésicos/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/prevención & control , Anciano , Dimensión del Dolor , Infusiones Intravenosas
3.
J Pharm Pharmacol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530642

RESUMEN

OBJECTIVES: Several studies have shown that propofol administration during surgery effectively attenuates remifentanil-induced hyperalgesia (RIH). Ciprofol, a novel intravenous sedative agent analogous to propofol, has not yet been proven efficacious in alleviating RIH. The present study aimed to investigate the effect of ciprofol on RIH and the possible mechanisms involved. METHODS: The RIH model was established by an infusion of remifentanil (1 µg·kg-1·min-1) 60 min in rats with incisional pain. Ciprofol (0.1, 0.25, and 0.4 mg·kg-1·min-1) was simultaneously infused to evaluate its effect on RIH. The antinociception of ciprofol was verified by measured paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL). γ-aminobutyric acid type A receptor α2 subunit (α2GABAAR), N-methyl-d-aspartate receptor NR2B subunit (NR2B), calcium/calmodulin-dependent protein kinase II α (CaMKIIα), and phosphorylated CaMKIIα (P-CaMKIIα) in the spinal cord and hippocampus of rats were assessed by western blotting and immunohistochemistry. KEY FINDINGS: The results showed that ciprofol dose-dependently increased PWMT and PWTL values in RIH rats. Moreover, ciprofol upregulated α2GABAAR and downregulated NR2B and P-CaMKIIα in the rat spinal cord and hippocampus. CONCLUSIONS: Ciprofol alleviates RIH effectively, and the anti-hyperalgesic mechanisms may involve increasing α2GABAAR levels and decreasing NR2B and P-CaMKIIα levels in the spinal cord and hippocampus.

4.
Biomedicines ; 12(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38398023

RESUMEN

The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers ß-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.

5.
Appl Biochem Biotechnol ; 196(8): 5354-5372, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38157155

RESUMEN

The normal function of the N-methyl D-aspartate receptors (NMDAR) in human lungs depends on precisely regulated synaptic glutamate levels. Pathophysiology of the lungs is brought on by the changes in homeostasis of glutamate in the synapsis that leads to abnormal NMDAR activity. Severe acute respiratory syndrome (SARS) primarily results in lung infections, particularly lung muscle stiffening, and NMDA receptor potentiation may increase calcium ion influx and support downstream signaling mechanisms. Hence, NMDAR modulators that depend on glutamate levels could be therapeutically useful medications with fewer unintended side effects. A compound called THP (tetrahydropalmatine) that amplifies Ca2+ influx and potentiates NMDA receptors has been identified in the current study. In asthmatic human airway smooth muscle (HASM) cells, THP regulates the NMDA receptor and helps in asthmatic ASM contraction, and the pharmacological stimulation of ASM depends on both brain and respiratory NMDA receptors. Glutamate potency is altered by this substance without any voltage-dependent side effects. Additionally, a GGPP (geranylgeranyl pyrophosphate)-dependent mechanism of THP reduced the production of pro-inflammatory cytokines in ASM. THP is distinctive in terms of its chemical makeup, functioning, and agonist concentration-dependent and allosteric modulatory activity. To treat COVID-19-related SARS, THP, or any future-related compounds will make good drug-like molecule candidates.


Asunto(s)
COVID-19 , Receptores de N-Metil-D-Aspartato , SARS-CoV-2 , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , COVID-19/metabolismo , COVID-19/complicaciones , SARS-CoV-2/efectos de los fármacos , Simulación por Computador , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Asma/tratamiento farmacológico , Asma/metabolismo , Ácido Glutámico/metabolismo , Tratamiento Farmacológico de COVID-19
6.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38004401

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.

7.
J Med Life ; 16(7): 1017-1021, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37900065

RESUMEN

In this retrospective study, we aimed to evaluate the effects of the neurotrophic compound Cerebrolysin on executive, cognitive, and functional performance in patients with traumatic brain injury (TBI) with a highly severe disability level. A total of 44 patients were included in the study, with 33 patients in the control group and 11 patients in the interventional group who received intravenous infusions of 30 mL Cerebrolysin. Both groups received standard rehabilitation therapy following the rehabilitation protocol for patients with TBI at Hospital Clínico Mutual de Seguridad. Functional and cognitive scales were evaluated at baseline, at four months, and at the endpoint of the intervention therapy at seven months (on average). The results revealed a significant improvement in the Cerebrolysin-treated group compared to the control group. Specifically, patients who received Cerebrolysin showed a moderate residual disability and a significant reduction in the need for care. Concerning the promising results and considering the limitations of the retrospective study design, we suggest that randomized controlled studies be initiated to corroborate the positive findings for Cerebrolysin in patients with moderate to severe brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Estudios Retrospectivos , Lesiones Encefálicas/rehabilitación , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Cognición , Recuperación de la Función
8.
Neurobiol Dis ; 184: 106226, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451474

RESUMEN

Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Serina , Ratones , Animales , Serina/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Mesencéfalo/metabolismo , Aminoácidos/metabolismo , Putamen/metabolismo , Homeostasis
9.
Neurobiol Dis ; 184: 106203, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336364

RESUMEN

L-serine generated in astrocytes plays a pivotal role in modulating essential neurometabolic processes, while its enantiomer, D-serine, specifically regulates NMDA receptor (NMDAR) signalling. Despite their physiological relevance in modulating cerebral activity, serine enantiomers metabolism in Parkinson's disease (PD) remains elusive. Using High-Performance Liquid Chromatography (HPLC), we measured D- and L-serine levels along with other amino acids known to modulate NMDAR function, such as L-glutamate, L-aspartate, D-aspartate, and glycine, in the post-mortem caudate putamen (CPu) and superior frontal gyrus (SFG) of PD patients. Moreover, we examined these amino acids in the cerebrospinal fluid (CSF) of de novo living PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) patients versus subjects with other neurological disorders (OND), used as control. We found higher D-serine and L-serine levels in the CPu of PD patients but not in the SFG, a cerebral region that, in contrast to the CPu, is not innervated by nigral dopaminergic terminals. We also highlighted a significant elevation of both serine enantiomers in the CSF samples from PD but not in those of AD and ALS patients, compared with control subjects. By contrast, none or only minor changes were found in the amount of other NMDAR modulating amino acids. Our findings identify D-serine and L-serine level upregulation as a biochemical signature associated with nigrostriatal dopaminergic degeneration in PD.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/metabolismo , Serina/metabolismo , Putamen/metabolismo , Enfermedad de Alzheimer/metabolismo , Aminoácidos , Receptores de N-Metil-D-Aspartato/metabolismo , N-Metilaspartato , Homeostasis
10.
Mol Divers ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37266849

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play essential roles in vital aspects of brain functions. NMDARs mediate clinical features of neurological diseases and thus, represent a potential therapeutic target for their treatments. Many findings implicated the GluN2B subunit of NMDARs in various neurological disorders including epilepsy, ischemic brain damage, and neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease, Huntington's chorea, and amyotrophic lateral sclerosis. Although a large amount of information is growing consistently on the importance of GluN2B subunit, however, limited recent data is available on how subunit-selective ligands impact NMDAR functions, which blunts the ability to render the diagnosis or craft novel treatments tailored to patients. To bridge this gap, we have focused on and summarized recently reported GluN2B selective ligands as emerging subunit-selective antagonists and modulators of NMDAR. Herein, we have also presented an overview of the structure-function relationship for potential GluN2B/NMDAR ligands with their binding sites and connection to CNS functionalities. Understanding of design rules and roles of GluN2B selective compounds will provide the link to medicinal chemists and neuroscientists to explore novel neurotherapeutic strategies against dysfunctions of glutamatergic neurotransmission.

11.
Exp Biol Med (Maywood) ; 248(7): 588-595, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37158084

RESUMEN

Major depressive disorder (MDD) is a complex illness that is arising as a growing public health concern. Although several brain areas are related to this type of disorders, at the cellular level, the parvalbumin-positive cells of the hippocampus interplay a very relevant role. They control pyramidal cell bursts, neuronal networks, basic microcircuit functions, and other complex neuronal tasks involved in mood disorders. In resistant depressions, the efficacy of current antidepressant treatments drops dramatically, so the new rapid-acting antidepressants (RAADs) are being postulated as novel treatments. Ketamine at subanesthetic doses and its derivative metabolites have been proposed as RAADs due to their rapid and sustained action by blocking N-methyl-d-aspartate (NMDA) receptors, which in turn lead to the release of brain-derived neurotrophic factor (BDNF). This mechanism produces a rapid plasticity activation mediated by neurotransmitter homeostasis, synapse recovery, and increased dendritic spines and therefore, it is a promising therapeutic approach to improve cognitive symptoms in MDD.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ketamina/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Parvalbúminas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/metabolismo , Antidepresivos/uso terapéutico , Interneuronas/metabolismo , Hipocampo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo
12.
Cell Biosci ; 13(1): 69, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998073

RESUMEN

BACKGROUND: N-methyl-D-aspartate receptors (NMDARs) are considered to be involved in several physiological and pathophysiological processes in addition to the progression of neurological disorders. However, how NMDARs are involved in the glycolytic phenotype of M1 macrophage polarization and the possibility of using them as a bio-imaging probe for macrophage-mediated inflammation remain unclear. METHODS: We analyzed cellular responses to NMDAR antagonism and small interfering RNAs using mouse bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS). An NMDAR targeting imaging probe, N-TIP, was produced via the introduction of NMDAR antibody and the infrared fluorescent dye FSD Fluor™ 647. N-TIP binding efficiency was tested in intact and LPS-stimulated BMDMs. N-TIP was intravenously administered to mice with carrageenan (CG)- and LPS-induced paw edema, and in vivo fluorescence imaging was conducted. The anti-inflammatory effects of dexamethasone were evaluated using the N-TIP-mediated macrophage imaging technique. RESULTS: NMDARs were overexpressed in LPS-treated macrophages, subsequently inducing M1 macrophage polarization. Mechanistically, NMDAR-mediated Ca2+ accumulation resulted in LPS-stimulated glycolysis via upregulation of PI3K/AKT/mTORC1 signaling. In vivo fluorescence imaging with N-TIP showed LPS- and CG-induced inflamed lesions at 5 h post-inflammation, and the inflamed lesions could be detected until 24 h. Furthermore, our N-TIP-mediated macrophage imaging technique helped successfully visualize the anti-inflammatory effects of dexamethasone in mice with inflammation. CONCLUSION: This study demonstrates that NMDAR-mediated glycolysis plays a critical role in M1 macrophage-related inflammation. Moreover, our results suggest that NMDAR targeting imaging probe may be useful in research on inflammatory response in vivo.

13.
IBRO Neurosci Rep ; 14: 185-194, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36824667

RESUMEN

Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.

14.
IBRO Neurosci Rep ; 14: 38-49, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36590249

RESUMEN

The anti-apoptosis effect of germinated brown rice (GBR) focusing on differentiated HT22 cells results in improved nutritional values after the germination process of GBR which contains total phenolic compounds and γ-aminobutyric acid (GABA). Cell death induced by 5 mM glutamate was investigated for 24 h to determine whether GBR mediates cell death through GABA receptors by using antagonists. The results showed that GBR (100 µg/ml) suppressed glutamate-induced cytotoxicity and caused arrest at the G1/S phase of the cell cycle in differentiated HT22 cells. Furthermore, GBR significantly decreased the expression level of c-Jun, while its active form, p-c-Jun, is the downstream product of the JNK-mediated apoptotic pathway and causes subsequent cell death. In addition, bicuculline (12.5 nM), a GABAA antagonist, could eliminate GBR effects, but phaclofen (1 mM), a GABAB antagonist, could not. Surprisingly, GBR exhibited a better neuroprotective effect than a pure commercial GABA compound (0.115 µM). These results indicated that GBR possessed high anti-apoptotic activity and inhibited cell death in differentiated HT22 cells by perturbing re-entry of the cell cycle and apoptosis via the GABAA receptor. Hence, GBR could be further used as a valuable nutritional compound to prevent apoptosis-induced neurodegenerative diseases.

15.
Neurosci Lett ; 792: 136958, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356820

RESUMEN

Alzheimer's disease (AD) is characterized behaviorally by cognitive deterioration and emotional disruption, and neuropathologically by amyloid-ß (A ß) plaques, neurofibrillary tangles, and complement C3 (C3)-expressing neurotoxic, reactive astrocytes. We previously demonstrated that C3 + reactive astrocytes in the hippocampus and entorhinal cortex of AD patients express serine racemase (SR), which produces the N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine. We show here that C3 + reactive astrocytes express SR in the amygdala of AD patients and in an amyloid mouse model of familial AD (5xFAD). 5xFAD mice also have deficits in cue fear memory recall that is dependent on intact amygdala function. Our results suggest that D-serine produced by reactive astrocytes in the amygdala could contribute to glutamate excitotoxicity and neurodegeneration observed with AD progression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Ratones , Animales , Astrocitos , Amígdala del Cerebelo , Placa Amiloide , Modelos Animales de Enfermedad , Serina
16.
Mol Neurobiol ; 60(1): 133-144, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36224322

RESUMEN

Neuronal death and synaptic loss are principal pathological features of Alzheimer's disease (AD). Amyloid beta oligomers (AßOs) constitute the main neurotoxin underscoring AD pathology. AßOs interact with N-methyl-D-aspartate receptors (NMDARs), resulting in neurotoxic events, including activation of apoptosis and synaptic impairment. Carnosic acid (CA), extracted from Salvia rosmarinus, has been verified its neuroprotective effects in AD. However, the precise mechanisms by which CA induces synaptic protection remain unclear. In this study, we established an in vitro AD model using SH-SY5Y human neuroblastoma cells. We observed that CA improved neuronal survival by suppressing apoptosis. Moreover, CA restored synaptic impairments by increasing expression levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein-95 (PSD-95), and synaptophysin (Syn). Furthermore, we found these protective effects were dependent on inhibiting the phosphorylation of NMDAR subtype 2B (NMDAR2B), which further suppressed calcium overload and promoted activation of the extracellular signal-regulated kinase (ERK)-cAMP response element-binding protein (CREB) pathway. Administration of N-methyl-D-aspartic acid (NMDA), an agonist of NMDARs, abolished these effects of CA. Our findings demonstrate that CA exerts neuroprotective effects in an in vitro model of AD by regulating NMDAR2B and its downstream cascades, highlighting the therapeutic potential of CA as a NMDARs-targeted candidate in the treatment of AD.


Asunto(s)
Abietanos , Enfermedad de Alzheimer , Neuroblastoma , Fármacos Neuroprotectores , Receptores de N-Metil-D-Aspartato , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apoptosis , Neuroblastoma/patología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Abietanos/farmacología
17.
Brain Behav ; 13(2): e2867, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585899

RESUMEN

BACKGROUND AND PURPOSE: Cerebral ischemia-reperfusion (I/R) injury is a major factor underlying the high mortality and morbidity rates in stroke patients. Our previous study found that the combination of Astragalus membranaceus extract and ligustrazine (Ast+Lig) treatment could protect brain tissues against inflammation in rats with thrombolytic cerebral ischemia. Activation of N-methyl-D-aspartate receptors (NMDAR) is implicated in brain damage induced by cerebral I/R injury. METHODS: We used in vivo and in vitro models of cerebral I/R injury for middle cerebral artery occlusion/reperfusion in mice and oxygen-glucose deprivation/reoxygenation in primary rat cerebral cortical neurons to evaluate the protective effects of Ast+Lig on cerebral I/R injury, and whether the protective mechanism was related to the regulation of NMDAR-ERK/CREB signaling. RESULTS: Treatment with Ast+Lig, or MK-801 (an inhibitor of NMDAR) significantly ameliorated neurological deficits, decreased infarct volumes, suppressed neuronal damage and Ca2+ influx, and maintained the mitochondrial membrane potential in vivo and in vitro following cerebral I/R injury based on 2,3,5-triphenyl tetrazolium chloride staining, immunohistochemistry, and immunofluorescent staining. Furthermore, treatment with Ast+Lig evidently prevented the upregulation of NR2B, but not NR2A, in vivo and in vitro following cerebral I/R injury based on western blotting and reverse transcription-quantitative PCR analyses. Moreover, treatment with Ast+Lig significantly increased the phosphorylation of ERK and CREB, as well as increasing their mRNA expression levels in vivo and in vitro following cerebral I/R injury. CONCLUSIONS: The overall results thus suggest that the Ast+Lig combination conferred neuroprotective properties against cerebral I/R injury via regulation of the NR2B-ERK/CREB signaling pathway.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Ratas , Ratones , Animales , Astragalus propinquus/metabolismo , Transducción de Señal , Receptores de N-Metil-D-Aspartato/metabolismo , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/prevención & control , Fármacos Neuroprotectores/farmacología
18.
J Pharmacol Sci ; 150(4): 233-243, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344045

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) in the brain are influenced by psychoactive drugs such as 2-(2-chlorophenyl)-2-(methylamino)cyclohexan-1-one (ketamine) and its analog 2-(ethylamino)-2-(3-methoxyphenyl)-cyclohexanone (methoxetamine). The recreational methoxetamine use can cause several toxicities and methoxetamine-related deaths have also been reported. Therefore, it has been banned in many countries. Since 2020, methoxetamine derivatives, 2-(ethylamino)-2-(m-tolyl)cyclohexan-1-one (deoxymethoxetamine) and 2-(isopropylamino)-2-(3-methoxyphenyl)cyclohexan-1-one (methoxisopropamine), have been sold online as designer drugs. However, how deoxymethoxetamine and methoxisopropamine act on NMDARs remains unknown. In this study, we first performed in silico docking studies of NMDARs, and deoxymethoxetamine and methoxisopropamine in addition to the major methoxetamine metabolites, 2-amino-2-(3-methoxyphenyl)-cyclohexanone (N-desethyl methoxetamine) and 2-(ethylamino)-2-(3-hydroxyphenyl)-cyclohexanone (O-desmethyl methoxetamine). The docking study suggested each compound interacts with NMDARs. We also determined the half-maximal inhibitory concentration (IC50s) of the methoxetamine-related compounds for NMDARs using NMDAR-expressing cartwheel interneurons of mice and patch-clamp recordings. We found that the IC50s of methoxetamine, deoxymethoxetamine, methoxisopropamine, N-desethyl methoxetamine, and O-desmethyl methoxetamine for NMDARs were 0.524, 0.679, 0.661, 1.649, and 0.227 µM, respectively. These results indicate that the methoxetamine-related compounds act as potent NMDAR blockers. Thus, deoxymethoxetamine and methoxisopropamine, both of which may cause damage by blocking NMDARs, are serious concerns. N-Desethyl methoxetamine and O-desmethyl methoxetamine may cause several adverse effects when methoxetamine is metabolized.


Asunto(s)
Ciclohexanonas , Receptores de N-Metil-D-Aspartato , Ciclohexanonas/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Ciclohexilaminas/farmacología
19.
Mol Cell ; 82(23): 4548-4563.e4, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309015

RESUMEN

Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.


Asunto(s)
Ácido Glutámico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutámico/metabolismo , Glicina/metabolismo , Transmisión Sináptica , Subunidades de Proteína/metabolismo
20.
Front Psychiatry ; 13: 976159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276313

RESUMEN

Background: Research is increasingly identifying an overlap between psychosis and immunological dysregulation. Certain autoantibodies are being identified in a small but probably relevant subgroup of patients with psychosis. The term "autoimmune psychosis" (AIP) and its corresponding red-flag signs present the opportunity for a new field in psychiatry to promote diagnostic workup and immunomodulating therapy in individual cases. Objectives: The present protocol aims to determine the seroprevalence of autoantibodies in first-episode psychosis (FEPs) using AIP red flag signs, and to explore the frequency of autoantibody subtypes and potential mediating confounders. Methods/design: This is a hospital-based case-control study. All participants will be consecutively selected from the main tertiary psychiatric hospital in Shenzhen City, China. Individuals admitted to the psychiatric ward and diagnosed with FEPs will be enrolled. Based on recent consensus, participants with red flags of AIPs will be defined as cases, while the remainder will be matched as controls. Seropositive antibodies will be detected and verified in cerebrospinal fluid (CSF) samples based on the fixed cell-based assay (CBA) method. The propensity score-adjusted odds ratios will be determined to investigate the key mediating confounders regarding autoantibody subtypes and red flag subsets. Discussion: The results of this study will facilitate the early identification of AIPs in FEP patients using the red flag sign and help identify key mediators that improve the accuracy of diagnostic algorithms. It will have clinical significance to focus on serum antibodies that have been verified in CSF samples, due to its consistency with clinical practices in current psychiatry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA