Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AMB Express ; 9(1): 135, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31468229

RESUMEN

Prolactin (PRL) is a hormone produced by the pituitary gland with innumerable functions, such as lactation, reproduction, osmotic and immune regulation. The present work describes the synthesis of hPRL in human embryonic kidney (HEK293) cells, transiently transfected with the pcDNA-3.4-TOPO® vector carrying the hPRL cDNA. A concentration of ~ 20 mg/L, including glycosylated (G-hPRL) and non-glycosylated (NG-hPRL) human prolactin, was obtained, with ~ 19% of G-hPRL, which is higher than that observed in CHO-derived hPRL (~ 10%) and falling within the wide range of 5-30% reported for pituitary-derived hPRL. N-Glycoprofiling analysis of G-hPRL provided: (i) identification of each N-glycan structure and relative intensity; (ii) average N-glycan mass; (iii) molecular mass of the whole glycoprotein and relative carbohydrate mass fraction; (iv) mass fraction of each monosaccharide. The data obtained were compared to pituitary- and CHO-derived G-hPRL. The whole MM of HEK-derived G-hPRL, determined via MALDI-TOF-MS, was 25,123 Da, which is 0.88% higher than pit- and 0.61% higher than CHO-derived G-hPRL. The main difference with the latter was due to sialylation, which was ~ sevenfold lower, but slightly higher than that observed in native G-hPRL. The "in vitro" bioactivity of HEK-G-hPRL was ~ fourfold lower than that of native G-hPRL, with which it had in common also the number of N-glycan structures.

2.
Int J Mol Sci ; 18(2)2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28165356

RESUMEN

Human thyrotropin (hTSH) is a glycoprotein with three potential glycosylation sites: two in the α-subunit and one in the ß-subunit. These sites are not always occupied and occupancy is frequently neglected in glycoprotein characterization, even though it is related to folding, trafficking, initiation of inflammation and host defense, as well as congenital disorders of glycosylation (CDG). For the first time N-glycoprofiling analysis was applied to the site-occupancy determination of two native pituitary hTSH, in comparison with three recombinant preparations of hTSH, a widely used biopharmaceutical. A single methodology provided the: (i) average N-glycan mass; (ii) mass fraction of each monosaccharide and of sulfate; and (iii) percent carbohydrate. The results indicate that the occupancy (65%-87%) and carbohydrate mass (12%-19%) can be up to 34%-57% higher in recombinant hormones. The average glycan mass is 24% lower in pituitary hTSH and contains ~3-fold fewer moles of galactose (p < 0.005) and sialic acid (p < 0.01). One of the two native preparations, which had the smallest glycan mass together with the lowest occupancy and GalNAc, sulfate, Gal and sialic acid contents, also presented the lowest in vivo bioactivity and circulatory half-life. The methodology described, comparing a recombinant biopharmaceutical to its native equivalent, can be applied to any physiologically or clinical relevant glycoprotein.


Asunto(s)
Carbohidratos/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Tirotropina/química , Tirotropina/metabolismo , Animales , Células CHO , Cricetulus , Glicoproteínas/farmacocinética , Glicosilación , Humanos , Ratones , Polisacáridos , Proteínas Recombinantes , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirotropina/farmacocinética
3.
J Biotechnol ; 202: 78-87, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25499076

RESUMEN

Human prolactin (hPRL) is a polypeptide hormone occurring in the non-glycosylated (NG-hPRL) and glycosylated (G-hPRL) forms, with MM of approximately 23 and 25kDa, respectively. It has a single, partially occupied N-glycosylation site located at Asn-31, which makes it a particularly simple and interesting model for glycosylation studies. The bioactivity of G-hPRL is lower than that of NG-hPRL (by ca. 4-fold) and its physiological function is not clear. However, carbohydrate moieties generally play important roles in the biosynthesis, secretion, biological activity, and plasma survival of glycohormones and can vary depending on the host cell. The main objective of this study was to determine the N-glycan structures present in native, pituitary G-hPRL and compare them with those present in the recombinant hormone. To obtain recombinant G-hPRL, genetically modified Chinese hamster ovary cells (CHO), adapted to growth in suspension, were treated with cycloheximide, thus increasing the glycosylation site occupancy from 5.5% to 38.3%, thereby facilitating G-hPRL purification. CHO cell-derived G-hPRL (CHO-G-hPRL) was compared to pituitary G-hPRL (pit-G-hPRL) especially with regard to N-glycoprofiling. Among the main differences found in the pituitary sample were an extremely low presence of sialylated (1.7%) and a high percentage of sulfated (74.0%) and of fucosylated (90.5%) glycans. A ∼6-fold lower in vitro bioactivity and a higher clearance rate in mice were also found for pit-G-hPRL versus CHO-G-hPRL. N-Glycan profiling proved to be a useful and accurate methodology also for MM and carbohydrate content determination for the two G-hPRL preparations, in good agreement with the values obtained directly via MALDI-TOF-MS.


Asunto(s)
Polisacáridos/química , Prolactina/química , Prolactina/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Cicloheximida/farmacología , Citoprotección/efectos de los fármacos , Glicosilación , Humanos , Ratones , Prolactina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA