Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(12): 7853-7863, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35615937

RESUMEN

N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O3 decomposes into an adsorbed atomic oxygen species (Oads) and an 3O2 on the active sites. The atomic charge and spin population on the Oads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O3 could be activated into 1O2 in addition to 3O2. The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature.

2.
Nanomicro Lett ; 14(1): 27, 2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34894293

RESUMEN

Atomically dispersed metals on N-doped carbon supports (M-NxCs) have great potential applications in various fields. However, a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-NxCs at the atomic-level is still lacking. Herein, we report a general approach to synthesize a series of three-dimensional (3D) honeycomb-like M-NxC (M = Mn, Fe, Co, Cu, or Ni) containing metal single atoms. Experimental results indicate that 3D M-NxCs exhibit a greatly enhanced dielectric loss compared with that of the NC matrix. Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure, which enhances conductive loss and dipolar polarization loss of 3D M-NxCs, respectively. Consequently, these 3D M-NxCs exhibit excellent electromagnetic wave absorption properties, outperforming the most commonly reported absorbers. This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.

3.
J Colloid Interface Sci ; 586: 551-562, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33246653

RESUMEN

A novel in-situ N-doped carbon nanoparticles (NCNs) was prepared through direct pyrolysis of N-rich polyaniline (PANI) without using external N-containing precursor and the as-prepared materials were employed as metal-free peroxydisulfate (PDS) activator for bisphenol A (BPA) degradation. The catalyst derived from PANI carbonization at 900 °C (NCNs-9) displayed the excellent catalytic activity to activate PDS, resulting in 96.0% BPA degradation efficiency within 20 min. The catalytic activity of NCNs was closely related to their structure-composition, and higher graphitic N content and larger BET surface area were beneficial to the generation of reactive oxygen species (ROS). The quenching tests and electron paramagnetic resonance (EPR) demonstrated that BPA degradation in PDS/NCNs system was accomplished via non-radical (1O2) and radical ( ·OH, SO4·-, and O2·-) pathways, in which O2·- was the main ROS. The origin of O2·- was the conversion of dissolved oxygen and the activation of PDS. The possible degradation pathways of BPA were also proposed. This study might provide inspirations to design in-situ N-doped carbon nanoparticles as the PDS activator for efficient degradation of persistent organic compound via advanced oxidation processes (AOPs).

4.
J Hazard Mater ; 345: 123-130, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29153971

RESUMEN

In this work, nitrogen-rich graphene-like carbon sheets (N-GLCS) with high specific surface area (488.4m2/g), narrow pore distribution and high N-doping (18.4 at%) were prepared and applied as both adsorbent and catalyst for the removal of bisphenols. Adsorption experiments demonstrated the high adsorption capacities of the N-GLCS toward bisphenol F (BPF) (222.9mg/g), bisphenol A (BPA) (317.8mg/g), and bisphenol C (BPC) (540.4mg/g). Results showed that about 98.6% of BPA (70mg/L) was removed at pH 7.0 within 80min after the adsorption-catalytic degradation process. The N-GLCS also showed a superb reusability for the catalytic oxidative degradation of BPA (70mg/L) with the removal percentage maintains over 83% after 5 cycles. With the synergistic combination of the excellent adsorption and catalytic properties of the N-GLCS, trace amount of pollutants can be preconcentrated and immobilized at the surface of N-GLCs, at the same time, active radicals were also produced at the surface of the N-GLCS by the activation of peroxydisulfate (PS), and finally the pollutants can be degraded in-situ by the active radicals. These findings provide a new avenue towards the efficient removal of trace-level EDCs from water solution by using the coupled adsorption-advanced oxidation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA