Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 1001-1011, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39226832

RESUMEN

Vacancy engineering and heterostructure construction are regarded as potent approaches for synergistically boosting hydrogen production in renewable energy conversion. Herein, a selective phosphorization strategy was implemented to fabricate coral-like ZnO/FeCoP@N-doped carbon hierarchical microspheres (ZnO/FeCoP@NCHMS) via only controllably phosphorizing the Co and Fe atoms in a precursor, which was formed by generating ZnCoFe LDH on the surface of a zinc cobalt coordination polymer microsphere. Then, by adopting a reduction treatment for ZnO/FeCoP@NCHMS, the innovative ZnO/FeCoPv@NCHMS with abundant phosphorus vacancies (Pv) was realized. The introduction of phosphorus vacancy could optimize the electronic structures of metal phosphides and accelerate the reconstruction of active species, thus speeding up the reaction kinetic. Likewise, the plentiful heterointerfaces greatly expedite the transfer of electrons and protons, exposing ultra-high active sites. By virtue of these fascinating characters and the unique coral-like hierarchical architecture, the as-prepared ZnO/FeCoPv@NCHMS reveal preeminent electrocatalytic activities, and the overpotentials for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) are as low as 177 and 173 mV at 10 mA cm-2 in alkaline medium, respectively. Impressively, the water electrolysis device assembled by ZnO/FeCoPv@NCHMS requires a mere cell voltage of 1.508 V to attain a current density of 10 mA cm-2. Furthermore, the ZnO/FeCoPv@NCHMS also demonstrate extraordinary durability, sustaining operation for at least 28 h (at 100 mA cm-2) during the water splitting process. This study provides novel insights into defect regulation and heterointerface construction for overall water splitting.

2.
Carbohydr Polym ; 346: 122588, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245483

RESUMEN

Aiming at dealing with organic and inorganic pollutants dissolved in aquatic environments, we introduce self-assembled fluorescent nanocomposite hydrogel based on a binary polysaccharide network (xanthan gum/chitosan) embedding nitrogen-doped carbon quantum dots not only as a hybrid solid optical sensor for detecting Cr(VI) ions but also to remove anionically charged contaminants Cr(VI) and methyl orange (MO) by acting as an adsorbent. This fluorescent nanocomposite achieved a detection limit of 0.29 µM when used to detect Cr(VI) and demonstrated a fluorescence quantum yield of 59.7 %. Several factors contributed to the effectiveness of the adsorption of Cr(VI) and MO in batch studies, including the solution pH, dosage of the adsorbent, temperature, initial contamination level, and contact time. Experimental results showed 456 mg/g maximum adsorption capacity at pH 4 for MO compared to 291 mg/g at pH 2 for Cr(VI) at 25 °C. In addition to conforming to Langmuir's model, Cr(VI) and MO's adsorption kinetics closely matched pseudo-second-order. Using thermodynamic parameters, the results indicate that Cr(VI) and MO adsorb spontaneously and exothermically. Recycling spent adsorbent for Cr(VI) and MO using NaOH at 0.1 M was possible; the respective adsorption efficiency remained at approximately 82.2 % and 83 % after the fifth regeneration cycle.

3.
J Colloid Interface Sci ; 678(Pt A): 1031-1042, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39236432

RESUMEN

Cost-efficient material with an ingenious design is important in the engineering applications of flexible energy storage and electromagnetic (EM) protection. In this study, bimetallic ZnCo2S4 (ZCS) polyhedral nanoparticles homogenously embedded in the surface of porous N-doped carbon nanofiber membranes (ZCS@PCNFM) have been fabricated by electrospinning technique combined with carbonization and hydrothermal processes. As a self-assembled electrode for lithium-ion batteries (LIBs), the bimetallic ZCS nanoparticles possess rich redox reactions, good electrical conductivity, and pseudocapacitive properties, while the three-dimensional (3D) multiaperture architecture of the nanofiber film not only shortens the transfer spacing of lithium ions and electrons but also effectively tolerates the volume variation during lithiation and delithiation cycles. Benefiting from the above merits, the ZCS@PCNFM electrode exhibits good cycle performance (662.3 mA h/g at 100 mA/g after 100 cycles), superior rate capacity (401.3 mA h/g at 1 A/g) and an extremely high initial specific capacity of 1152.2 mAh/g at 100 mA/g. Meanwhile, depending on the hierarchical nanostructure and multi-component heterogeneous interface effects constructed by 3D inlaid architecture, the ZCS@PCNFM nanocomposite exhibits fascinating microwave absorption (MA) characteristics with a superhigh reflection loss (RL) of -49.7 dB at a filling content of only 20 wt% and corresponding effective absorption bandwidth (EAB, RL<-10 dB) of 5.2 GHz ranging from 12.8 to 18.0 GHz at 2.2 mm.

4.
Small ; : e2403314, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152932

RESUMEN

Efficient and durable electrocatalysts for the hydrogen evolution reaction (HER) in alkaline seawater environments are essential for sustainable hydrogen production. Zeolitic imidazolate framework-8 (ZIF-8) is synthesized through pulsed laser ablation in liquid, followed by pyrolysis, producing N-doped porous carbon (NC). NC matrix serves as a self-template, enabling Pt nanocluster decoration (NC-Pt) via pulsed laser irradiation in liquid. NC-Pt exhibits a large surface area, porous structure, high conductivity, N-rich carbon, abundant active sites, low Pt content, and a strong NC-Pt interaction. These properties enhance efficient mass transport during the HER. Remarkably, the optimized NC-Pt-4 catalyst achieves low HER overpotentials of 52, 57, and 53 mV to attain 10 mA cm-2 in alkaline, alkaline seawater, and simulated seawater, surpassing commercial Pt/C catalysts. In a two-electrode system with NC-Pt-4(-)ǀǀIrO2(+) as cathode and anode, it demonstrates excellent direct seawater electrolysis performance, with a low cell voltage of 1.63 mV to attain 10 mA cm-2 and remarkable stability. This study presents a rapid and efficient method for fabricating cost-effective and highly effective electrocatalysts for hydrogen production in alkaline and alkaline seawater environments.

5.
Luminescence ; 39(8): e4852, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108144

RESUMEN

In this paper, nitrogen-doped carbon quantum dots (N-CQDs) are synthesized by the hydrothermal method. N-CQDs exhibit strong fluorescence, and N-CQDs are well dispersed in water as well as in various organic solvents. N-CQDs emit multi-color fluorescence from blue to red, with wavelengths in the range of 450-650 nm without the need for purification. Furthermore, the fluorescence emission of N-CQDs was selectively quenched after adding Fe3+ ions. N-CQDs were used as a nanoprobe for the detection of Fe3+ ions, showing a good linear correlation between the fluorescence emission and the concentration of Fe3+ in the Fe3+ concentration range from 0 to 100 µM. The limit of detection (LOD) was 55.7 µM for Fe3+ in water and 40.2 µM in fetal bovine serum (FBS) samples. The study shows that the synthesized N-CQDs have low cost and great potential for application in biological analysis.


Asunto(s)
Carbono , Hierro , Nitrógeno , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química , Hierro/análisis , Hierro/química , Animales , Bovinos , Espectrometría de Fluorescencia , Iones/análisis , Límite de Detección , Fluorescencia , Color
6.
ChemSusChem ; : e202401255, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129709

RESUMEN

In this study chitin derived from shrimp shells was used in the design of heterogeneous Pd-based catalysts for Heck and Suzuki-Miyaura cross-coupling reactions. The synthesis of Pd nanoparticles supported on N-doped carbons was performed through different approaches, including a sustainable mechanochemical approach, by using a twin-screw extruder. All catalytic systems were characterized by a multitechnique approach and the effect of nanoparticles size, N-doping on the support, and their synergistic interactions were elucidated. Specifically, Kelvin Probe Atomic Force Microscopy provided valuable insights on charge transfer and metal-support interactions. The catalytic behaviour of the samples was investigated in cross-coupling reactions under batch conditions and under semi-continuous flow solvent-free conditions, respectively obtaining a quantitative yield and a noteworthy productivity of 8.7 mol/(gPdh).

7.
ChemSusChem ; : e202401552, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135510

RESUMEN

Fe single atoms (Fe SAs) based catalysts have received much attention in electrocatalytic oxygen reduction reaction (ORR) due to its low-cost and high activity. Yet, the facile synthesis of efficient and stable Fe SAs catalysts are still challenging. Here, we reported a Fe SAs anchored on N-doped mesoporous carbon microspheres (NC) catalyst via spraying drying and pyrolysis processes. The highly active Fe SAs are uniformly distributed on the NC matrix, which prevented the aggregation benefiting from the enhanced Fe-N bonds. Also, the mesoporous carbon structure is favorable for fast electron and mass transfer. The optimized Fe@NC-2-900 catalyst shows positive half wave potential (E1/2 = 0.86 V vs reversible hydrogen electrodes (RHE)) and starting potential (Eonset = 0.98 V vs RHE) in ORR, which is comparable to the commercial Pt/C catalyst (E1/2= 0.87 V, Eonset = 1.08 V). Outstanding stability with a current retention rate of 92.5% for 9 hours and good methanol tolerance are achieved. The assembled zinc-air batteries showed good stability up to 500 hours at a current density of 5 mA cm-2. This work shows potentials of Fe SAs based catalysts for the practical application in ORR and pave a new avenue for promoting their catalytic performances.

8.
Materials (Basel) ; 17(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203161

RESUMEN

To address the problem of the low nitrogen (N) content of carbon materials prepared through the direct carbonization of food waste, soybean meal and egg whites with high N contents were selected to carry out carbonization experiments on food waste. At 220 °C, the effects of hydrothermal carbonization and microwave carbonization on the properties of supercapacitor electrode materials were investigated. The results show that food waste doped with soybean meal and egg whites could achieve good N doping. At a current density of 1 A·g-1, the specific capacitance of the doped carbon prepared by hydrothermal doping is as high as 220.00 F·g-1, which is much greater than that of the raw material prepared through the hydrothermal carbonization of food waste alone, indicating that the hydrothermal carbonization reactions of soybean meal, egg white, and food waste promote the electrochemical properties of the prepared carbon materials well. However, when a variety of raw materials are mixed for pyrolysis carbonization, different raw materials cannot be fully mixed in the pyrolysis process, and under the etching action of potassium hydroxide, severe local etching and local nonetching occur, resulting in a severe increase in the pore size distribution and deterioration of the electrochemical performance of the prepared carbon materials. At a current density of 1 A·g-1, the specific capacitance of these prepared carbon materials is 157.70 F·g-1, whereas it is only 62.00 F·g-1 at a high current density of 20 A·g-1. Therefore, this study suggests that the hydrothermal carbonization process is superior to the microwave pyrolysis carbonization process for preparing supercapacitor electrode materials with multiple samples doped with each other.

9.
Food Chem ; 459: 140338, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38996633

RESUMEN

It is highly desirable to develop a low-cost and rapid detection method for trace levels of carbendazim fungicide residues, which would be beneficial for improving human health and mitigating environmental issues. Herein, isolated single tungsten atoms were implanted onto well-organized metal-organic framework (MOF)-derived N-doped carbons to form W-N-C single-site heterojunctions with ultrahigh electrocatalytic activity. The coupling of W-N-C with Cu3(HHTP)2, an electronically conductive MOF with a large surface area and porous structure, exhibited enhanced electrocatalytic performance for the oxidation of carbendazim (CBZ) when they were used for decorating graphene nanoplatelet flexible electrode arrays fabricated via template-assisted scalable filtration. A wide linear range (3.0 nM-50 µM) with an ultra-low detection limit of 0.97 nM and fast response was achieved for CBZ analysis. Moreover, the sensing platform has been utilised to monitor CBZ levels in vegetable samples with satisfactory recovery rates of 97.2-102% and a low relative standard deviation of 1.9%.


Asunto(s)
Bencimidazoles , Carbamatos , Cobre , Electrodos , Contaminación de Alimentos , Fungicidas Industriales , Grafito , Estructuras Metalorgánicas , Verduras , Carbamatos/análisis , Carbamatos/química , Grafito/química , Verduras/química , Catálisis , Estructuras Metalorgánicas/química , Bencimidazoles/química , Bencimidazoles/análisis , Cobre/química , Fungicidas Industriales/análisis , Fungicidas Industriales/química , Contaminación de Alimentos/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Tungsteno/química , Límite de Detección , Oxidación-Reducción
10.
Mikrochim Acta ; 191(8): 459, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985347

RESUMEN

A renewable electrochemical screen-printed electrode (SPE) is proposed based on magnetic bamboo-like nitrogen-carbon (N-C) nanotubes loaded with nickel-cobalt alloy (NiCo) nanoparticles (NiCo@N-CNTs) for the determination of ractopamine (RAC). During the preparation of NiCo@N-CNTs, Co-MOF-67 (ZIF-67) was firstly synthesized, and then blended with dicyandiamide and nickel acetate, followed by a one-step pyrolysis procedure to prepare NiCo@N-doped carbon nanotubes. The surface morphology, structure, and chemical composition of NiCo@N-CNTs were characterized by SEM, TEM, XRD, XPS, and EDS. The electrocatalytic and electrochemical behavior of NiCo@N-CNTs were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that NiCo@N-CNTs possessed remarkable conductivity and electrocatalysis to the oxidation of ractopamine (RAC). By using screen-printed electrode (SPE), NiCo@N-CNTs, and a designed base support, a magnetic RAC sensor (NiCo@N-CNTs/SPE) was successfully constructed. It presented a detection linear range of 0.05-80 µM with a detection limit of 12 nM (S/N = 3). It also exhibited good sensitivity, reproducibility, and practicability in spiked real pork samples. Since the adhesion of NiCo/N-CNTs on SPE was controlled by magnet, the NiCo@N-CNTs was easily detached from the SPE surface by magnetism and thus displayed excellent renewability. This work broadened insights into portable devices for on-site and real-time analysis.

11.
ACS Appl Mater Interfaces ; 16(28): 36401-36412, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38958058

RESUMEN

Combining the merits of the dendrite-free formation of a Mg anode and the fast kinetics of Li ions, the Mg-Li hybrid ion batteries (MLIBs) are considered an ideal energy storage system. However, the lack of advanced cathode materials limits their further practical application. Herein, we report a dual strategy of morphology optimization and interlayer expansion for the construction of hierarchical flower-like VS2 architecture coated by N-doped amorphous carbon layers. This tailored hierarchical flower-like structure coupled with homogeneous N-doped amorphous carbon layers cooperatively provide more active sites and buffer volume changes, thus realizing the enhancement of capacity and structural stability. Moreover, the enlarged interlayer spacing caused by the cointercalation of polyvinylpyrrolidone and ammonium ions can effectively promote the charge transfer rate and facilitate the rapid ion diffusion, as further demonstrated by electrochemical results and theoretical calculations. These features endow the hierarchical flower-like VS2 cathode with superior specific energy density (644.4 Wh kg-1, average voltage of 1.2 V vs Mg2+/Mg) and excellent rate capability (181.1 mAh g-1 at 2000 mA g-1). Systematic ex situ characterization measurements are employed to reveal the ion storage mechanism, which confirms that Li+ storage plays a leading role in the capacity contribution of MLIBs. Our strategy is in favor of providing useful insights to design and construct MLIBs with high energy density and excellent rate performance.

12.
ChemSusChem ; : e202401049, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963775

RESUMEN

Developing efficient metal-free catalysts for lignin valorization is essential but challenging. In this study, a cost-effective strategy is employed to synthesize a P, N co-doped carbon catalyst through hydrothermal and carbonization processes. This catalyst effectively cleaved α-O-4, ß-O-4, and 4-O-5 lignin linkages, as demonstrated with model compounds. Various catalysts were prepared at different carbonization temperatures and thoroughly characterized using techniques such as XRD, RAMAN, FTIR, XPS, NH3-TPD, and HRTEM. Attributed to higher acidity, the P5NC-500 catalyst exhibited the best catalytic activity, employing H2O2 as the oxidant in water. Additionally, this metal-free technique efficiently converted simulated lignin bio-oil, containing all three linkages, into valuable monomers. Density Functional Theory calculations provided insight into the reaction mechanism, suggesting substrate and oxidant activation by P-O-H sites in the P5NC-500, and by N-C-O-H in the CN catalyst. Moreover, the catalyst's recyclability and water utilization enhance its environmental compatibility, offering a highly sustainable approach to lignin valorization with potential applications in various industries.

13.
ACS Appl Mater Interfaces ; 16(29): 38414-38428, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982793

RESUMEN

Carbon-based magnetic nanocomposites as promising lightweight electromagnetic wave (EMW) absorbents are expected to address critical issues caused by electromagnetic pollution. Herein, Fe3O4 nanoparticles embedded into a 3D N-rich porous carbon nanohoneycomb (Fe3O4@NC) were developed via the pyrolysis of an in-situ-polymerized compound of m-phenylenediamine initiated by FeCl2 in the presence of NaCl crystals as templates. Results demonstrate that Fe3O4@NC features highly dispersed Fe3O4 nanoparticles into an ultrahigh specific pyridinic-N doping carbon matrix, resulting in excellent impedance matching characteristics and electromagnetic wave absorbing capability with the biggest effective absorption bandwidth (EAB) of up to 7.1 GHz and the minimum reflective loss (RLmin) of up to -65.5 dB in the thin thickness of 2.5 and 2.3 mm, respectively, which also outperforms the majority of carbon-based absorbers reported. Meanwhile, its high absorption performance is further demonstrated by an ethylene propylene diene monomer wave absorbing patch filled with 8.0 wt % Fe3O4@NC, which can completely shield a 5G signal in a mobile phone. In addition, theory calculation reveals that there is a strongest dx2-Pz orbital hybridization interaction between Fe3O4 clusters and pyridinic-N dopants in the carbon network, compared with other kinds of N dopants, which can not only generate more dipoles of carbon networks but also increase net magnetic moments of Fe3O4, thereby leading to a coupling effect of efficient dielectric and magnetic losses. This work provides new insights into the precise design and synthesis of carbon-based magnetic composites with specific interface interactions and morphological effects for high-efficiency EMW absorption materials.

14.
Mikrochim Acta ; 191(7): 416, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913162

RESUMEN

To realize the reutilization of waste Myrica rubra in the analytical field, we synthesized Myrica rubra-based N-doped carbon dots (MN-CDs) and further anchored them onto the surface of Fe3S4 to fabricate Fe3S4@MN-CD nanocomposites. The as-fabricated nanocomposites possessed higher peroxidase-mimetic activity than its two precursors, resulting from the synergistic effect between them, and could catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) into deep blue oxTMB with a strong 652-nm absorption. Under optimized conditions (initial solution pH, 3.5; incubation temperature, 35 ℃; Fe3S4@MN-CD concentration, 50 µg mL-1, and 652-nm absorption), Fe3S4@MN-CDs were employed for colorimetric assay of p-aminophenol (p-AP) with wide linear range (LR, 2.9-100 µM), low detection limit (LOD, 0.87 µM), and satisfactory recoveries (86.3-105%) in environmental waters. Encouragingly, this colorimetric assay provided the relative accuracy of 97.0-99.4% as compared with  conventional HPLC-UV detection. A portable smartphone-based colorimetric application was developed by combining the Fe3S4@MN-CD-based visually chromogenic reaction with a "Thing Identify" APP software. Besides, we engineered an image-capturing device feasible for field use, in which the internal-compact sealing prevented external light source from entering photography chamber, thereby reducing light interference, and also the bottom light source enhanced the intensity of blue imaging. This colorimetric platform exhibited satisfactory LR (1-500 µM), low LOD (0.3 µM), and fortification recoveries (86.6-99.6%). In the chromogenic reaction catalyzed by Fe3S4@MN-CDs, ·O2- played a key role in concomitant with the participation of •OH and h+. Both the colorimetric assay and smartphone-based intelligent sensing show great promising in on-site monitoring of p-AP under field conditions.


Asunto(s)
Aminofenoles , Carbono , Colorimetría , Límite de Detección , Puntos Cuánticos , Teléfono Inteligente , Contaminantes Químicos del Agua , Colorimetría/métodos , Aminofenoles/química , Aminofenoles/análisis , Carbono/química , Contaminantes Químicos del Agua/análisis , Puntos Cuánticos/química , Materiales Biomiméticos/química , Bencidinas/química , Peroxidasa/química
15.
ChemSusChem ; : e202400997, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923349

RESUMEN

The design and construction of highly efficient electrocatalysts for overall water splitting and urea electrolysis are significantly important for promoting energy conversion and realizing green hydrogen production. In this work, we constructed a multi-phase heterojunction through a simple hydrothermal and phosphorization process. The P-doped NiFe2O4 (P-NiFe2O4) nanoparticles were uniformly anchored on the bamboo-like N-doped carbon nanotubes (NCNTs) grown via a NiFe-alloy autocatalysis. The electronic structure and coordination environment of active species were optimized by the synergistic action of P doping, well-dispersed ultrafine NiFe2O4, and NCNTs matrix with good conductivity, enhancing their quantity and activity for electrocatalysis. Consequently, the P-NiFe2O4/NCNTs/NiFe exhibits excellent HER and OER activities with an overpotential of 111 and 266 mV at 10 mA cm-2 in 1 M KOH, respectively. The symmetrical overall water-splitting cell using P-NiFe2O4/NCNTs/NiFe as both anode and cathode delivers 10 mA cm-2 at a voltage of 1.604 V in 1 M KOH. Notably, the two-electrode cell requires a low voltage of 1.467 V to achieve a current density of 10 mA cm-2 in 1 M KOH solution with 0.6 M urea. This designed catalysts display outstanding reaction kinetics and catalytic stability. This work provides useful guidance for applying transition metal-based catalysts for hydrogen production.

16.
Adv Sci (Weinh) ; 11(28): e2401730, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696659

RESUMEN

Sodium ion batteries (SIBs) are considered as the ideal candidates for the next generation of electrochemical energy storage devices. The major challenges of anode lie in poor cycling stability and the sluggish kinetics attributed to the inherent large Na+ size. In this work, Bi nanosphere encapsulated in N-doped carbon nanowires (Bi@N-C) is assembled by facile electrospinning and carbonization. N-doped carbon mitigates the structure stress/strain during alloying/dealloying, optimizes the ionic/electronic diffusion, and provides fast electron transfer and structural stability. Due to the excellent structure, Bi@N-C shows excellent Na storage performance in SIBs in terms of good cycling stability and rate capacity in half cells and full cells. The fundamental mechanism of the outstanding electrochemical performance of Bi@N-C has been demonstrated through synchrotron in-situ XRD, atomic force microscopy, ex-situ scanning electron microscopy (SEM) and density functional theory (DFT) calculation. Importantly, a deeper understanding of the underlying reasons of the performance improvement is elucidated, which is vital for providing the theoretical basis for application of SIBs.

17.
Talanta ; 277: 126252, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805948

RESUMEN

COVID-19 as an infectious disease with rapid transmission speed is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), so, early and accurate diagnostics of COVID-19 is quite challenging. In this work, the selective and sensitive self-enhanced ECL method to detect of SARS-CoV-2 protein was designed with magnetic N-doped carbon derived from dual-ligand metal-organic frameworks (MOF) (CoO@N-C) with the primary and tertiary amino groups as a novel coreactant that covalently combined with Ru(bpy)2(phen-NH2)2+ as electrochemiluminescence (ECL) emitter. Mixed-ligand strategy and selected nitrogen-containing ligands, 4,4',4''-((1,3,5-triazine-2,4,6-triyl) tris-(azanediyl)) tribenzoic acid (H3TATAB) with 2-aminoterephthalic acid (BDC-NH2) were used for synthesis of the proposed MOF. Also, magnetic CoO@N-C with high synergistically charge transfer kinetics and good stability can be used as an effective platform/coreactor on the ITO electrode which load more Ru-complex as signal producing compound and SARS-CoV-2 N protein antibody to increase the sensitivity of the immunosensor. Furthermore, (CoO@N-C) as coreactor improved the ECL signal of the Ru (II)-complex more than 2.1 folds compared to tripropylamine. In view of these competences, the novel "on-off" ECL biosensor performed with great stability and repeatability for detection of SARS-CoV-2 protein, which exhibited a broad linearity from 8 fg. mL-1 to 4 ng. mL-1 (6 order of magnitude) and an ultra-low limit of detection 1.6 fg. mL-1. Finally, this proposed method was successfully applied to detect of SARS-CoV-2 N protein in serum sample with satisfactory results, indicating the proposed immunosensor has the potential for quick analysis of SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Carbono , Técnicas Electroquímicas , Mediciones Luminiscentes , Estructuras Metalorgánicas , SARS-CoV-2 , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Estructuras Metalorgánicas/química , Humanos , Carbono/química , Técnicas Electroquímicas/métodos , Ligandos , COVID-19/diagnóstico , Mediciones Luminiscentes/métodos , Técnicas Biosensibles/métodos , Límite de Detección , Inmunoensayo/métodos , Nitrógeno/química
18.
Small ; : e2402927, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794873

RESUMEN

Na3V2(PO4)3 is a promising high-voltage cathode for aqueous zinc-ion batteries (ZIBs) and organic sodium-ion batteries (SIBs). However, the poor rate capability, specific capacity, and cycling stability severely hamper it from further development. In this work, Na3V2(PO4)3 (NVP) with vanadium nitride (VN) quantum dots encapsulated by nitrogen-doped carbon (NC) nanoflowers (NVP/VN@NC) are manufactured as cathode using in situ nitridation, carbon coating, and structural adjustment. The outer NC layer increases the higher electronic conductivity of NVP. Furthermore, VN quantum dots with high theoretical capacity not only improve the specific capacity of pristine NVP, but also serve as abundant "pins" between NVP and NC to strengthen the stability of NVP/VN@NC heterostructure. For Zn-ion storage, these essential characteristics allow NVP/VN@NC to attain a high reversible capacity of 135.4 mAh g-1 at 0.1 A g-1, and a capacity retention of 91% after 2000 cycles at 5 A g-1. Meanwhile, NVP/VN@NC also demonstrates to be a stable cathode material for SIBs, which can reach a high reversible capacity of 124.5 mAh g-1 at 0.1 A g-1, and maintain 92% of initial capacity after 11000 cycles at 5 A g-1. This work presents a feasible path to create innovative high-voltage cathodes with excellent reaction kinetics and structural stability.

19.
Molecules ; 29(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792210

RESUMEN

A Fe-Co dual-metal co-doped N containing the carbon composite (FeCo-HNC) was prepared by adjusting the ratio of iron to cobalt as well as the pyrolysis temperature with the assistance of functionalized silica template. Fe1Co-HNC, which was formed with 1D carbon nanotubes and 2D carbon nanosheets including a rich mesoporous structure, exhibited outstanding oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The ORR half-wave potential is 0.86 V (vs. reversible hydrogen electrode, RHE), and the OER overpotential is 0.76 V at 10 mA cm-2 with the Fe1Co-HNC catalyst. It also displayed superior performance in zinc-air batteries. This method provides a promising strategy for the fabrication of efficient transition metal-based carbon catalysts.

20.
ACS Appl Mater Interfaces ; 16(22): 29060-29068, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38767933

RESUMEN

Highly efficient electrochemical CO2-to-CO conversion is a promising approach for achieving carbon neutrality. While nonmetallic carbon electrocatalysts have shown potential for CO2-to-CO utilization in H-type cells, achieving efficient conversion in flow cells at an industrial scale remains challenging. In this study, we present a cost-effective synthesis strategy for preparing ultrathin 2D carbon nanosheet catalysts through simple amine functionalization. The optimized catalyst, NCNs-2.5, demonstrates exceptional CO selectivity with a maximum Faradaic efficiency of 98% and achieves a high current density of 55 mA cm-2 in a flow cell. Furthermore, the catalyst exhibits excellent long-term stability, operating continuously for 50 h while maintaining a CO selectivity above 90%. The superior catalytic activity of NCNs-2.5 is attributed to the presence of amine-N active sites within the carbon lattice structure. This work establishes a foundation for the rational design of cost-effective nonmetallic carbon catalysts as sustainable alternatives to metals in energy conversion systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA