Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Chronic Stress (Thousand Oaks) ; 8: 24705470241277451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253023

RESUMEN

Background: Evidence from animal and human studies suggests glutamatergic dysfunction in posttraumatic stress disorder (PTSD). The purpose of this study was to investigate glutamate abnormalities in the dorsolateral prefrontal cortex (DLFPC) of individuals with PTSD using 7T MRS, which has better spectral resolution and signal-to-noise ratio than lower field strengths, thus allowing for better spectral quality and higher sensitivity. We hypothesized that individuals with PTSD would have lower glutamate levels compared to trauma-exposed individuals without PTSD and individuals without trauma exposure. Additionally, we explored potential alterations in other neurometabolites and the relationship between glutamate and psychiatric symptoms. Methods: Individuals with PTSD (n = 27), trauma-exposed individuals without PTSD (n = 27), and individuals without trauma exposure (n = 26) underwent 7T MRS to measure glutamate and other neurometabolites in the left DLPFC. The severities of PTSD, depression, anxiety, and dissociation symptoms were assessed. Results: We found that glutamate was lower in the PTSD and trauma-exposed groups compared to the group without trauma exposure. Furthermore, N-acetylaspartate (NAA) was lower and lactate was higher in the PTSD group compared to the group without trauma exposure. Glutamate was negatively correlated with depression symptom severity in the PTSD group. Glutamate was not correlated with PTSD symptom severity. Conclusion: In this first 7T MRS study of PTSD, we observed altered concentrations of glutamate, NAA, and lactate. Our findings provide evidence for multiple possible pathological processes in individuals with PTSD. High-field MRS offers insight into the neurometabolic alterations associated with PTSD and is a powerful tool to probe trauma- and stress-related neurotransmission and metabolism in vivo.

2.
Alcohol Alcohol ; 59(5)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39127890

RESUMEN

AIMS: Widespread brain metabolite abnormalities in those with alcohol use disorder (AUD) were reported in numerous studies, but the effects of the pro-atherogenic conditions of hypertension, type 2 diabetes mellitus, hepatitis C seropositivity, and hyperlipidemia on metabolite levels were not considered. These conditions were associated with brain metabolite abnormalities in those without AUD. We predicted treatment-seeking individuals with AUD and pro-atherogenic conditions (Atherogenic+) demonstrate lower regional metabolite markers of neuronal viability [N-acetylaspartate (NAA)] and cell membrane turnover/synthesis [choline-containing compounds (Cho)], compared with those with AUD without pro-atherogenic conditions (Atherogenic-) and healthy controls (CON). METHODS: Atherogenic+ (n = 59) and Atherogenic- (n = 51) and CON (n = 49) completed a 1.5 T proton magnetic resonance spectroscopic imaging study. Groups were compared on NAA, Cho, total creatine, and myoinositol in cortical gray matter (GM), white matter (WM), and select subcortical regions. RESULTS: Atherogenic+ had lower frontal GM and temporal WM NAA than CON. Atherogenic+ showed lower parietal GM, frontal, parietal and occipital WM and lenticular nuclei NAA level than Atherogenic- and CON. Atherogenic- showed lower frontal GM and WM NAA than CON. Atherogenic+ had lower Cho level than CON in the frontal GM, parietal WM, and thalamus. Atherogenic+ showed lower frontal WM and cerebellar vermis Cho than Atherogenic- and CON. CONCLUSIONS: Findings suggest proatherogenic conditions in those with AUD were associated with increased compromise of neuronal integrity and cell membrane turnover/synthesis. The greater metabolite abnormalities observed in Atherogenic+ may relate to increased oxidative stress-related compromise of neuronal and glial cell structure and/or impaired arterial vasoreactivity/lumen viability.


Asunto(s)
Alcoholismo , Aterosclerosis , Encéfalo , Humanos , Masculino , Femenino , Persona de Mediana Edad , Alcoholismo/metabolismo , Alcoholismo/patología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Adulto , Aterosclerosis/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Colina/metabolismo , Hipertensión/metabolismo , Hiperlipidemias/metabolismo , Inositol/metabolismo , Espectroscopía de Resonancia Magnética , Creatina/metabolismo
3.
Biochem Biophys Res Commun ; 736: 150435, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39116682

RESUMEN

Shati/Nat8l was identified as an upregulated molecule in the nucleus accumbens (NAc) of mice following repeated methamphetamine administration. Region-specific roles of this molecule are associated with psychiatric disorders. In the present study, we examined the importance of Shati/Nat8l in the hippocampus because of its high expression in this region. Mice with a hippocampus-specific knockdown of Shati/Nat8l (hippocampal Shati-cKD) were prepared by the microinjection of adeno-associated virus (AAV) vectors carrying Cre into the hippocampus of Shati/Nat8lflox/flox mice, and their phenotypes were investigated. Drastic reduction in the expression and function of Shati/Nat8l in the hippocampus was observed in Shati-cKD mice. These mice exhibited cognitive dysfunction in behavioral experiments and impaired the electrophysiological response to the stimuli, which elicits long-term potentiation. Shati/Nat8l in the hippocampus is suggested to possibly play an important role in synaptic plasticity to maintain cognitive function. This molecule could be a therapeutic target for hippocampus-related disorders such as dementia.

4.
J Clin Med ; 13(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064167

RESUMEN

Background/Objectives: The aim of this study was to evaluate brain metabolism using MR spectroscopy (MRS) after recovery from Coronavirus disease (COVID-19) and to test the impact of disease severity on brain metabolites. Methods: We performed MRS on 81 individuals (45 males, 36 females, aged 40-60), who had normal MRI findings and had recovered from COVID-19, classifying them into mild (17), moderate (36), and severe (28) groups based on disease severity during the acute phase. The study employed two-dimensional spectroscopic imaging above the corpus callosum, focusing on choline (Cho), creatine (Cr), and N-acetylaspartate (NAA). We analyzed Cho/Cr and NAA/Cr ratios as well as absolute concentrations using water as an internal reference. Results: Results indicated that the Cho/Cr ratio was higher with increasing disease severity, while absolute Cho and NAA/Cr ratios showed no significant differences across the groups. Notably, absolute Cr and NAA levels were significantly lower in patients with severe disease. Conclusions: These findings suggest that the severity of COVID-19 during the acute phase is associated with significant changes in brain metabolism, marked by an increase in Cho/Cr ratios and a reduction in Cr and NAA levels, reflecting substantial metabolic alterations post-recovery.

5.
Brain Behav Immun ; 121: 280-290, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032543

RESUMEN

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (both p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.


Asunto(s)
Encéfalo , Macaca mulatta , Poli I-C , Corteza Prefrontal , Efectos Tardíos de la Exposición Prenatal , Animales , Masculino , Femenino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inmunología , Embarazo , Encéfalo/metabolismo , Poli I-C/farmacología , Corteza Prefrontal/metabolismo , Inositol/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Creatina/metabolismo , Taurina/metabolismo , Colina/metabolismo , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Estudios Longitudinales
6.
Alzheimers Dement ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073196

RESUMEN

INTRODUCTION: Altered neurometabolism, detectable via proton magnetic resonance spectroscopic imaging (1H-MRSI), is spatially heterogeneous and underpins cognitive impairments in Alzheimer's disease (AD). However, the spatial relationships between neurometabolic topography and cognitive impairment in AD remain unexplored due to technical limitations. METHODS: We used a novel whole-brain high-resolution 1H-MRSI technique, with simultaneously acquired 18F-florbetapir positron emission tomography (PET) imaging, to investigate the relationship between neurometabolic topography and cognitive functions in 117 participants, including 22 prodromal AD, 51 AD dementia, and 44 controls. RESULTS: Prodromal AD and AD dementia patients exhibited spatially distinct reductions in N-acetylaspartate, and increases in myo-inositol. Reduced N-acetylaspartate and increased myo-inositol were associated with worse global cognitive performance, and N-acetylaspartate correlated with five specific cognitive scores. Neurometabolic topography provides biological insights into diverse cognitive dysfunctions. DISCUSSION: Whole-brain high-resolution 1H-MRSI revealed spatially distinct neurometabolic topographies associated with cognitive decline in AD, suggesting potential for noninvasive brain metabolic imaging to track AD progression. HIGHLIGHTS: Whole-brain high-resolution 1H-MRSI unveils neurometabolic topography in AD. Spatially distinct reductions in NAA, and increases in mI, are demonstrated. NAA and mI topography correlates with global cognitive performance. NAA topography correlates with specific cognitive performance.

7.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071259

RESUMEN

Background: Evidence from animal and human studies suggests glutamatergic dysfunction in posttraumatic stress disorder (PTSD). The purpose of this study was to investigate glutamate abnormalities in the dorsolateral prefrontal cortex (DLFPC) of individuals with PTSD using 7T MRS, which has better spectral resolution and signal-to-noise ratio than lower field strengths, thus allowing for better spectral quality and higher sensitivity. We hypothesized that individuals with PTSD would have lower glutamate levels compared to trauma-exposed individuals without PTSD and individuals without trauma exposure. Additionally, we explored potential alterations in other neurometabolites and the relationship between glutamate and psychiatric symptoms. Methods: Individuals with PTSD (n=27), trauma-exposed individuals without PTSD (n=27), and individuals without trauma exposure (n=26) underwent 7T MRS to measure glutamate and other neurometabolites in the left DLPFC. The severities of PTSD, depression, anxiety, and dissociation symptoms were assessed. Results: We found that glutamate was lower in the PTSD and trauma-exposed groups compared to the group without trauma exposure. Furthermore, N-acetylaspartate (NAA) was lower and lactate was higher in the PTSD group compared to the group without trauma exposure. Glutamate was negatively correlated with depression symptom severity in the PTSD group. Glutamate was not correlated with PTSD symptom severity. Conclusion: In this first 7T MRS study of PTSD, we observed altered concentrations of glutamate, NAA, and lactate. Our findings provide evidence for multiple possible pathological processes in individuals with PTSD. High-field MRS offers insight into the neurometabolic alterations associated with PTSD and is a powerful tool to probe trauma- and stress-related neurotransmission and metabolism in vivo.

8.
Neuroradiology ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880823

RESUMEN

INTRODUCTION: Canavan disease (CD) is a rare autosomal recessive neurodegenerative disorder caused by a deficiency of aspartoacylase A, an enzyme that degrades N-acetylaspartate (NAA). The disease is characterized by progressive white matter degeneration, leading to intellectual disability, seizures, and death. This retrospective study aims to describe the full spectrum of magnetic resonance imaging (MRI) findings in a large case series of CD patients. MATERIALS AND METHODS: MRI findings in 18 patients with confirmed CD were investigated, and the full spectrum of brain abnormalities was compared with the existing literature to provide new insights regarding the brain MRI findings in these patients. All the cases were proven based on genetic study or NAA evaluation in urine or brain. RESULTS: Imaging analysis showed involvement of the deep and subcortical white matter as well as the globus pallidus in all cases, with sparing of the putamen, caudate, and claustrum. The study provides updates on the imaging characteristics of CD and validates some underreported findings such as the involvement of the lateral thalamus with sparing of the pulvinar, involvement of the internal capsules and corpus callosum, and cystic formation during disease progression. CONCLUSION: To our knowledge, this is one of the largest case series of patients with CD which includes a detailed description of the brain MRI findings. The study confirmed many of the previously reported MRI findings but also identified abnormalities that were previously rarely or not described. We speculate that areas of ongoing myelination are particularly vulnerable to changes in CD.

9.
Mol Genet Metab ; 142(2): 108489, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718669

RESUMEN

BACKGROUND: Canavan disease is a devastating neurometabolic disorder caused by accumulation of N acetylaspartate in brain and body fluids due to genetic defects in the aspartoacylase gene (ASPA). New gene therapies are on the horizon but will require early presymptomatic diagnosis to be fully effective. METHODS: We therefore developed a fast and highly sensitive liquid chromatography mass spectrometry (LC-MS/MS)-based method for quantification of N-acetylaspartate in dried blood spots and established reference ranges for neonates and older controls. With this test, we investigated 45 samples of 25 Canavan patients including 8 with a neonatal sample. RESULTS: Measuring N-acetylaspartate concentration in dried blood with this novel test, all Canavan patients (with variable severity) were well separated from the control group (median; range: 5.7; 1.6-13.6 µmol/L [n = 45] vs 0.44; 0.24-0.99 µmol/L [n = 59] (p < 0.05)). There was also no overlap when comparing neonatal samples of Canavan patients (7.3; 5.1-9.9 µmol/L [n = 8]) and neonatal controls (0.93; 0.4-1.8 µmol/L [n = 784]) (p < 0.05). CONCLUSIONS: We have developed a new LC-MS/MS-based screening test for early postnatal diagnosis of Canavan disease that should be further evaluated in a population-based study once a promising treatment becomes available. The method meets the general requirements of newborn screening and should be appropriate for multiplexing with other screening approaches that combine chromatographic and mass spectrometry techniques.


Asunto(s)
Ácido Aspártico , Enfermedad de Canavan , Pruebas con Sangre Seca , Tamizaje Neonatal , Espectrometría de Masas en Tándem , Humanos , Enfermedad de Canavan/diagnóstico , Enfermedad de Canavan/sangre , Enfermedad de Canavan/genética , Recién Nacido , Tamizaje Neonatal/métodos , Pruebas con Sangre Seca/métodos , Espectrometría de Masas en Tándem/métodos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/sangre , Cromatografía Liquida , Femenino , Masculino , Lactante , Preescolar , Cromatografía Líquida con Espectrometría de Masas , Amidohidrolasas
10.
Brain Sci ; 14(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38790460

RESUMEN

OBJECTIVE: The aim of this study is to investigate the association between Cathepsin B and Parkinson's Disease (PD), with a particular focus on determining the role of N-acetylaspartate as a potential mediator. METHODS: We used summary-level data from Genome-Wide Association Studies (GWAS) for a two-sample Mendelian randomization (MR) analysis, exploring the association between Cathepsin B (3301 cases) and PD (4681 cases). A sequential two-step MR approach was applied (8148 cases) to study the role of N-acetylaspartate. RESULTS: The MR analysis yielded that genetically predicted elevated Cathepsin B levels correlated with a reduced risk of developing PD (p = 0.0133, OR: 0.9171, 95% CI: 0.8563-0.9821). On the other hand, the analysis provided insufficient evidence to determine that PD affected Cathepsin B levels (p = 0.8567, OR: 1.0035, 95% CI: 0.9666-1.0418). The estimated effect of N-acetylaspartate in this process was 7.52% (95% CI = -3.65% to 18.69%). CONCLUSIONS: This study suggested that elevated Cathepsin B levels decreased the risk of developing PD, with the mediation effect of N-acetylaspartate. Further research is needed to better understand this relationship.

11.
Schizophr Res ; 269: 58-63, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733800

RESUMEN

N-acetylasparate and lactate are two prominent brain metabolites closely related to mitochondrial functioning. Prior research revealing lower levels of NAA and higher levels of lactate in the cerebral cortex of patients with schizophrenia suggest possible abnormalities in the energy supply pathway necessary for brain function. Given that stress and adversity are a strong risk factor for a variety of mental health problems, including psychotic disorders, we investigated the hypothesis that stress contributes to abnormal neuroenergetics in patients with schizophrenia. To test this hypothesis, we used the Stress and Adversity Inventory (STRAIN) to comprehensively assess the lifetime stressor exposure profiles of 35 patients with schizophrenia spectrum disorders and 33 healthy controls who were also assessed with proton magnetic resonance spectroscopy at the anterior cingulate cortex using 3 Tesla scanner. Consistent with the hypothesis, greater lifetime stressor exposure was significantly associated with lower levels of N-acetylasparate (ß = -0.36, p = .005) and higher levels of lactate (ß = 0.43, p = .001). Moreover, these results were driven by patients, as these associations were significant for the patient but not control group. Though preliminary, these findings suggest a possible role for stress processes in the pathophysiology of abnormal neuroenergetics in schizophrenia.


Asunto(s)
Ácido Aspártico , Ácido Láctico , Esquizofrenia , Estrés Psicológico , Humanos , Masculino , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Femenino , Adulto , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Persona de Mediana Edad , Adulto Joven , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Trastornos Psicóticos/diagnóstico por imagen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Espectroscopía de Resonancia Magnética
12.
Methods Mol Biol ; 2785: 115-142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427192

RESUMEN

MRS is a noninvasive technique to measure different metabolites in the brain. Changes in the levels of certain metabolites can be used as surrogate markers for Alzheimer's disease. They can potentially be used for diagnosis, prediction of prognosis, or even assessing response to treatment.There are different techniques for MRS acquisitions including STimulated Echo Acquisition Mode (STEAM) and Point Resolved Spectroscopy (PRESS). In terms of localization, single or multi-voxel methods can be used. Based on current data: 1. NAA, marker of neuronal integrity and viability, reduces in AD with longitudinal changes over the time as the disease progresses. There are data claiming that reduction of NAA is associated with tau accumulation, early neurodegenerative processes, and cognitive decline. Therefore, it can be used as a stage biomarker for AD to assess the severity of the disease. With advancement of disease modifying therapies, there is a potential role for NAA in the future to be used as a marker of response to treatment. 2. mI, marker of glial cell proliferation and activation, is associated with AB pathology and has early changes in the course of the disease. The NAA/mI ratio can be predictive of AD development with high specificity and can be utilized in the clinical setting to stratify cases for further evaluation with PET for potential treatments. 3. The changes in the level of other metabolites such as Chol, Glu, Gln, and GABA are controversial because of the lack of standardization of MRS techniques, current technical limitations, and possible region specific changes. 4. Ultrahigh field MRS and more advanced techniques can overcome many of these limitations and enable us to measure more metabolites with higher accuracy. 5. Standardization of MRS techniques, validation of metabolites' changes against PET using PET-guided technique, and longitudinal follow-ups to investigate the temporal changes of the metabolites in relation to other biomarkers and cognition will be crucial to confirm the utility of MRS as a potential noninvasive biomarker for AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Espectroscopía de Resonancia Magnética , Encéfalo/metabolismo , Cognición , Biomarcadores/metabolismo
13.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 58-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206287

RESUMEN

BACKGROUND: To elucidate the neurobiology underlying alcohol's effect on the human brain, we examined the acute effects of moderate alcohol administration on levels of glutamatergic neurometabolites and N-acetylaspartate, an amino acid found in neurons, may reflect disordered neuronal integrity. METHODS: Eighteen healthy Japanese participants (7 males/11 females) aged 20-30 years who were heterozygous for an inactive allele of acetaldehyde dehydrogenase-2 (ALDH/*1/*2) were included. Participants underwent an intravenous alcohol infusion using the clamp method at a target blood alcohol concentration (BAC) of 0.50 mg/mL for 90 min within a range of ±0.05 mg/mL. We examined glutamate + glutamine (Glx) and N-acetylaspartate N-acetylaspartylglutamate (NAA) levels in the midcingulate cortex (MCC) using 3 T 1 H-MRS PRESS at baseline, 90 min, and 180 min (i.e., 90 min after alcohol infusion was finished). A two-way repeated-measures analysis of variance was used to assess longitudinal changes in Glx and NAA levels, with time and sex as within- and between-subject factors, respectively. Pearson's correlation coefficients were calculated among neurometabolite levels and BAC or blood acetaldehyde concentration (BAAC). RESULTS: Both Glx (F(2,32) = 8.15, p = 0.004, η2 = 0.15) and NAA (F(2,32) = 5.01, p = 0.04, η2 = 0.07) levels were increased after alcohol injection. There were no sex or time × sex interaction effects observed. NAA levels were positively correlated with BAAC at 90 min (r(13) = 0.77, p = 0.01). There were no associations between neurometabolite levels and BAC. CONCLUSIONS: Both Glx and NAA levels in the MCC increased in response to the administration of moderate concentrations of alcohol. Given positive associations between NAA levels and BAAC and the hypothetical glutamate release via dopamine pathways, the effects of drinking on the MCC in the acute phase may be ascribed to acetaldehyde metabolized from alcohol.

14.
J Neurochem ; 168(2): 69-82, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38178803

RESUMEN

N-acetylaspartate (NAA) is an abundant central nervous system amino acid derivative that is tightly coupled to mitochondria and energy metabolism in neurons. A reduced NAA signature is a prominent early pathological biomarker in multiple neurodegenerative diseases and becomes progressively more pronounced as disease advances. Because NAA synthesis requires aspartate drawn directly from mitochondria, we argued that this process is in direct competition with oxidative phosphorylation for substrate and that sustained high levels of NAA synthesis would be incompatible with pathological energy crisis. We show here that over-expression of the rate-limiting NAA synthetic enzyme in the hippocampus of the 5x familial Alzheimer's disease (5xFAD) mouse results in an exaggerated pathological ATP deficit and accelerated cognitive decline. Over-expression of NAA synthase did not increase amyloid burden or result in cell loss but did significantly deplete mitochondrial aspartate and impair the ability of mitochondria to oxidize glutamate for adenosine triphosphate (ATP) synthesis. These results define NAA as a sink for energetic substrate and suggest initial pathological reductions in NAA are part of a response to energetic crisis designed to preserve substrate bioavailability for mitochondrial ATP synthesis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ácido Aspártico/metabolismo , Adenosina Trifosfato/metabolismo
15.
J Inherit Metab Dis ; 47(2): 230-243, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38011891

RESUMEN

Canavan disease (CD) is a leukodystrophy caused by mutations in the N-acetylaspartate (NAA) hydrolase aspartoacylase (ASPA). Inability to degrade NAA and its accumulation in the brain results in spongiform myelin degeneration. NAA is mainly synthesized by neurons, where it is also a precursor of the neuropeptide N-acetylaspartylglutamate (NAAG). Hydrolysis of this peptide by glutamate carboxypeptidases is an additional source of extracellular NAA besides the instant neuronal release of NAA. This study examines to what extent NAA released from NAAG contributes to NAA accumulation and pathogenesis in the brain of Aspanur7/nur7 mutant mice, an established model of CD. Towards this aim, Aspanur7/nur7 mice with additional deficiencies in NAAG synthetase genes Rimklb and/or Rimkla were generated. Loss of myelin in Aspanur7/nur7 mice was not significantly affected by Rimkla and Rimklb deficiency and there was also no obvious change in the extent of brain vacuolation. Astrogliosis was slightly reduced in the forebrain of Rimkla and Rimklb double deficient Aspanur7/nur7 mice. However, only minor improvements at the behavioral level were found. The brain NAA accumulation in CD mice was, however, not significantly reduced in the absence of NAAG synthesis. In summary, there was only a weak tendency towards reduced pathogenic symptoms in Aspanur7/nur7 mice deficient in NAAG synthesis. Therefore, we conclude that NAAG metabolism has little influence on NAA accumulation in Aspanur7/nur7 mice and development of pathological symptoms in CD.


Asunto(s)
Enfermedad de Canavan , Ratones , Animales , Enfermedad de Canavan/genética , Enfermedad de Canavan/metabolismo , Enfermedad de Canavan/patología , Encéfalo/patología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Neuronas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Modelos Animales de Enfermedad , Ácido Aspártico/metabolismo , Ligasas/metabolismo
16.
IBRO Neurosci Rep ; 15: 287-292, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37885832

RESUMEN

Objective: Proton magnetic resonance spectroscopy (1H-MRS) was applied in this study to detect metabolite changes in the brain of post-stroke cognitive impairment (PSCI) and normal volunteers. The levels of N-acetylaspartate (NAA) and creatinine (Cr) and in the frontal lobe, hippocampus and cingulate gyrus were measured to distinguish patients with post-stroke cognitive impairment (PSCI) and normal control group (NC). The relationship between them and cognitive function was explored and a critical value of the metabolite ratio was predicted. This study may serve as a reference for the diagnosis of cognitive dysfunction after stroke. Methods: A total of 46 patients with PSCI (PSCI group, all patients are unilateral cerebral infarction or intracerebral haemorrhage) were screened by the Mini-Mental Status Examination (MMSE), and 35 healthy volunteers were selected as normal control group (NC group). The general information of gender, age, and education level was matched between the two groups. Two groups of subjects were examined using MRS and evaluated for cognitive function using the MMSE test and the Montreal Cognitive Assessment Scale (MoCA). The correlation between MRS and neurobehavioral scale (MMSE test and MoCA scale) was analysed, and the possible demarcation points of the brain metabolism of PSCI were evaluated. Result: The MMSE and MoCA scores of patients with PSCI were lower significantly when compared with those of the NC group (P < 0.05). The NAA/Cr values of the bilateral hippocampus, bilateral frontal lobe and bilateral anterior and posterior cingulate gyrus in the PSCI group were lower than those in the NC group (P < 0.05). The NAA/Cr cut-off value for the right frontal lobe was 1.533, and the NAA/Cr sensitivity, specificity and Youden index for the right frontal lobe were 0.943, 0.935, and 0.878. Conclusion: NAA/Cr values in the MRS bilateral frontal, bilateral hippocampus and bilateral anterior and posterior cingulate gyrus were reduced in the cognitively impaired post-stroke patients compared to the normal control group. MRS was also found to be correlated with the score of neurobehavioral scale (MMSE test and MoCA scale) and the combination of the two could evaluate cognitive dysfunction more comprehensively and objectively. NAA/Cr value of the right frontal lobe < 1.533 indicated that PSCI may occur. In accordance with this cut-off point, PSCI could be detected as early as possible and timely intervention could be carried out.

17.
J Infect Dis ; 228(11): 1559-1570, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37540098

RESUMEN

BACKGROUND: The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS: All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS: Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS: In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.


Asunto(s)
COVID-19 , Glutamina , Humanos , Femenino , Adulto , Persona de Mediana Edad , Espectroscopía de Protones por Resonancia Magnética/métodos , Glutamina/metabolismo , Protones , Prueba de COVID-19 , COVID-19/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Inositol/metabolismo , Glutamatos/metabolismo , Ácido Aspártico/metabolismo
18.
Cells ; 12(14)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37508525

RESUMEN

An unmet clinical goal in demyelinating pathologies is to restore the myelin sheath prior to neural degeneration. N-acetylaspartate (NAA) is an acetylated derivative form of aspartate, abundant in the healthy brain but severely reduced during traumatic brain injury and in patients with neurodegenerative pathologies. How extracellular NAA variations impact the remyelination process and, thereby, the ability of oligodendrocytes to remyelinate axons remains unexplored. Here, we evaluated the remyelination properties of the oligodendroglial (OL) mouse cell line Oli-neuM under different concentrations of NAA using a combination of biochemical, qPCR, immunofluorescence assays, and in vitro engagement tests, at NAA doses compatible with those observed in healthy brains and during brain injury. We observed that oligodendroglia cells respond to decreasing levels of NAA by stimulating differentiation and promoting gene expression of myelin proteins in a temporally regulated manner. Low doses of NAA potently stimulate Oli-neuM to engage with synthetic axons. Furthermore, we show a concentration-dependent expression of specific histone deacetylases essential for MBP gene expression under NAA or Clobetasol treatment. These data are consistent with the idea that oligodendrocytes respond to lowering the NAA concentration by activating the remyelination process via deacetylase activation.


Asunto(s)
Ácido Aspártico , Histona Desacetilasas , Ratones , Animales , Ácido Aspártico/farmacología , Histona Desacetilasas/metabolismo , Vaina de Mielina/metabolismo , Diferenciación Celular
19.
Artículo en Ruso | MEDLINE | ID: mdl-37382978

RESUMEN

OBJECTIVE: Study of the effectiveness of monotherapy with potassium N-acetylaminosuccinate (Cogitum) for asthenic syndrome (fatigue) in individuals, uncharacteristic somatic, neurological diseases, anxiety disorders, depression and other diseases that may interfere with asthenia. MATERIAL AND METHODS: Patients with fatigue scores of 22 or more on the Fatigue Assessment Scale (FAS) were randomly divided into the main group (MG) - 37 people, mean age 22 years [21; 24] and the control group (CG) - 34 people, mean age 21 years [19; 23]. The Trail Making Test (TMT-A and TMT-B), the assessment of general well-being on a visual analogue scale (VAS), where 0 is the worst state of health, 10 is the state of absolute well-being, was assessed. MG patients received a solution of potassium N-acetylaminosuccinate (Cogitum) 750 mg per day in a sterile container, CG patients received sterile water with banana flavor in a sterile container. The duration of the study was 21 days. RESULTS: Prior to the start of the study, there were no statistically significant differences in FAS, TMT, and VAS between MG and CG. After 21 days, the FAS score in the MG decreased (p=0.00001), the time of TMT-A (p=0.000012) and TMT-B (p=0.000033) decreased, the VAS score increased (p=0.00024). There were no statistically significant changes in the CG. Placebo effect was noted in 10 patients of the CG (29.4%). CONCLUSION: Potassium aminosuccinate (Cogitum) at a daily dose of 750 mg and a duration of treatment of 21 days effectively eliminates the symptoms of asthenic syndrome (fatigue), while accompanied by an improvement in complex cognitive functions. The results of our study suggest that fatigue (asthenic syndrome) and cognitive impairment may have a common pathogenetic mechanism - a deficiency of systems in which mediators are N-acetylaspartate and N-acetylaspartylglutamate. Cogitum had no side effects and was well tolerated. Cogitum is superior to placebo in the treatment of fatigue (asthenic syndrome).


Asunto(s)
Astenia , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Adulto Joven , Adulto , Astenia/tratamiento farmacológico , Síndrome , Fatiga , Potasio
20.
Int J Biol Macromol ; 244: 125405, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37336383

RESUMEN

Protein glycation and aggregation have a pivotal role in many diseases including diabetes and neurodegenerative disorders. N-acetyl aspartate (NAA), an osmolyte derived from L-aspartic acid, is one of the most abundant metabolites in the mammalian brain. Although NAA is supposed to be a substitute for a neuronal marker, its function is not fully elucidated. Herein, we have investigated the effect of NAA on glycation, AGEs formation and aggregation of irisin. AGE-specific fluorescence showed strong inhibition of AGEs formation in the presence of NAA, demonstrating its anti-glycating property. The aggregates present in MG-modified irisin were also reduced by NAA, which was confirmed by Thioflavin T fluorescence and fluorescence microscopy. Further, for the explanation of the strong anti-glycating potential of NAA, the interaction between irisin and NAA was also examined. Interaction studies involving steady-state fluorescence and molecular docking demonstrated that hydrogen bonding and salt bridges by NAA stabilize the irisin. It was found that glycation-prone residues i.e., lysine and arginine are specifically involved in the interaction which might prevent them from getting modified during the process of glycation. This study for the first time reported the antiglycating potential of NAA which can be implicated in the therapeutic management of various glycation-related complications.


Asunto(s)
Ácido Aspártico , Reacción de Maillard , Animales , Ácido Aspártico/metabolismo , Simulación del Acoplamiento Molecular , Fibronectinas/metabolismo , Encéfalo/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA